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CHAPTER 1
INTRODUCTION

Large scale engineering design problems are often characterized by
multidisciplinary interactions in which participating disciplines are intrinsically linked to
one another. The interdependencies of discipline analysis modules in such applications
contributes to difficulties in successfully implementing a holistic design synthesis strategy.
Furthermore, such an integrated implementation is also subject to complexities introduced
as a result of an increased number of design variablés and constraints. The objective of this
work is to overcome the many obstacles inherent in the multidisciplinary problem in order
to take advantage of the synergistic nature of integrated design.

When one speaks of design optimization, it is essential to distinguish between the
analysis and design processes. Analysis involves determining the response of a defined
system to its environment whereas design involves the process of defining that system
[Van84]. The huge strides made in the development of structural analysis methods over the
last forty years, combined with the growth of high power computing capabilities, has
resulted in the increased application of optimization techniques in the design of engineering
systems [Sch81].

The design process is initiated with a statement of requirements from which the
design criteria are derived. Other design critéria are determined based on the design
concept. The design process itself becomes a learning process as it is determined what the
physics of the actual system can deliver in relation to the desirable system characteristics
[Per84]. The actual design process encompasses several stages in which optimization
methods could be applied in order to achieve an improved design. These stages, as

described in Lem84, consist of the mission definition stage, in which system requirements
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are defined, followed by the conceptual design, preliminary design, and finally, detailed
design stages. The application of design optimization is most effective when introduced
into the early stages of the design process, where numerous decisions must be made
[Miug4].

The conceptual design phase produces some baseline configuration obtained as a
result of complex trade-off studies.r The process formerly consisted of guessing an initial
configuration based on intuition and experience, analyzing the configuration, and then
performing time consuming and tedious parametric studies to examine a prescribed design
space. The quality of the answers was thus dependent on the skill of the designer
[Lem84]. The application of optimization at this stage is especially useful in that an
increased number of trade-off studies, design variables, and sophisticated analyses can be
incorporated into the design process, thus aiding in the evaluation of competing design
concepts.

The object of the preliminary design phase is to refine the design estimates made
during the conceptual phase and to add additional detail to the configuration description.
The design baseline is analyzed in significantly greater detail, involving simultaneous
executions of discipline analyses among numerous design groups. As explained in Lem84,
the simultaneous néture of this stage frequently results in inconsistent designs among
groups due to the lack of a definable hierarchy from which iterative loops could be
meaningfully established. The incorporation of optimization in this stage has two-fold
benefits. First, it is in the preliminary design stage that the designer has the largest number

of important options and decisions to make, thus providing the environment in which
optimization techniques can be applied with greatest impact on computational efficiency.
Secondly, the recent advances in system decomposition methods [Sob90] permit
meaningful design optimization in these non-hierarchic environments, thus eliminating the

problems introduced as a result of the lack of an identifiable system hierarchy.
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The final stage in the design process is that of detail design. This stage is largely
mechanical in nature, involving substantially more complex analyses. Detail design is
concerned with local aspects such as joints and openings. By the time this stage is reached,
optimization has very little impact on the overall design requirements.

The present study addresses the appliéations of optimization in the preliminary
design stage in which the most capability for positive change exists. As previously stated,
a major concern in this stage involves achieving an accurate and efficient mathematical
representation of large engineering systems in order to perform meaningful design
synthesis. Two basic solution strategies have been proposed for these highly coupled
design problems. The first involves an adhoc decomposition in which the participating
analyses of the various subsystems are performed in some prescribed order. In such an
approach, the resulting design is dependent upon the order in which the analyses are
implemented. The more desirable strategy is one which embraces parallel processing, in
which each subsystem is examined simultaneously and with due consideration of all
subsystem interactions [Wei86].

Multilevel decomposition methods provide a systematic approach for decoupling
large complex systems into smaller, more tractable subsystems. These methods account
for the interactions between the subsystems on the basis of a linear sensitivity analysis. In
a majority of such efforts, the decomposition is governed either by an obvious hierarchy in
the system, or on the basis of discipline if there is indeed a multidisciplinary interaction.

The present study develops three general decomposition approaches for
optimization of large engineering systems that are applicable in problems where a distinct
system hierarchy is difficult to identify. The methods are particularly applicable for
multidisciplinary design problems which are characterized by closely coupled interactions
among discipline analyses. Recent technological and computer developments in the areas
of cumulative constraint representations [Haj82], sensitivity analysis for non-hierarchic

systems [Sch76 and Haf80], optimal sensitivity analysis [Sob82], and distributed
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computing capabilities [Rog81], provide the necessary components to create a
decomposition methodology that allows for truly integrated synthesis and has the advantage
of subsystem modularity. Such an advantage allows for implementation of specialized
methods for analysis, computational efficiency, and the ability to incorporate human
intervention and decision making in the form of an expert systems capability.
| It is important to stress that the results of this investigation are not methods
applicable to only a specific situation, but rather, are metﬁbdologics which can be used for
a large class of engineering design problems in which the system is non-hierarchic in
nature, Sbecifically, two automated, or formal, methods are developed to accomplish this
purpose. The methods are referred to as the Global Sensitivity Equation (GSE) Method
[Sob88b] and the Concurrent Subspace Optimization (CSSO) Method, which is largely
based on a blueprint for generic system decomposition in non-hierarchic environmeiits
[Sob88a]. The modularity of the subsystems which exists in the CSSO is taken advantage
of to create a methodology which allows for heuristics to be applied in an embedded expert

systems capability. This approach is referred to as the Concurrent Subspace Optimization -

- Embedded Expert System (CSSO-EES) Method.

In the investigation of the applicability of the GSE method for large scale
engineering problems, a multidisciplinary test environment is used involving the disciplines
of structures, aerodynamics and performance, and flight mechanics. The objective of the
synthesis process is to find the minimum weight configuration of a general aviation aircraft
subject to design considerations from all disciplines.

The feasibility of the CSSO method is demonstrated through implementation of a
verification procedure in which a simplistic ten-bar truss model provides the test bed. The
minimum weight configuration is sought, with constraints and design variables stemming
from topology determination and member sizing subsystems.

The applicability of an expert systems capability is investigated for the CSSO-EES

method using a control/structure interaction problem. The object of the synthesis problem
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is to determine the minimum weight design of a ten-bar truss subject to static and dynamic
loadings, with constraints placed on static stress, natural frequencies, and static and
dynamic displacements.

In this chapter, the application of optimization in the various design phases is
introduced and some of the problems associated with these applications is discussed. The
objectives of this study are then stated, with a brief description of the multidisciplinary
example problems used for verification purposes.

Chapter 2 contains a review of literature pertinent to the basic understanding that is
required in order to appreciate the development of the synthesis methodologies on which
this dissertation focuses. The most crucial developments in the field of optimization are
presented, including a review of actual industrial applications of optimization methods in
the design process.

Chapter 3 focuses on the synthesis methodology required to implement optimization
in a highly coupled environment. The difference between hierarchic and non-hierarchic
systems is established. Basic concepts and definitions are introduced with a generic
optimization statement.

A discussion of various approaches to determine coupled system sensitivity is
presented in Chapter 4. The use of the Global Sensitivity Equation method is compared to
other techniques, including a finite difference approach.

A generic development of the Global Sensitivity Equation (GSE) method, the
Concurrent Subspace Optimization (CSSO) method, and the Concurrent Subspace
Optimization - Embedded Expert System (CSSO-EES) method is presented in Chapter 5.
The requirements of each method, as well as potential applications, are also examined.

Specific applications of these methods in test problems are described in detail in
Chapter 6. The mathematical models, analysis requirements, and computational tools are

delineated for each method.
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The implementation of solution techniques for the three methods is described in
Chapter 7. The Global Sensitivity Equation method applications center on strategies to
increase efficiency and solution accuracy for large problems. The Concurrent Subspace
Optimization method and its heuristic counterpart, the Concurrent Subspace Optimization -
Embedded Expert System method, are assessed with the aim of determining their
feasibility. |

Results obtained from the implementation of the solution techniques described in
the previous chapter are discussed in Chapter 8. Conclusions drawn from these

discussions, and recommendations for further research are presented in Chapter 9.
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CHAPTER 2
LITERATURE SURVEY

Structural optimization applications prior to 1960 were predominantly based on a
simultaneous failure mode approach, wherein the inequality constrained weight
minimization problem was converted to obtaining the solution to a set of nbnlinear
simultaneous equations. Shanley [Sha52] and Gerard [Ger56) applied this approach to the
minimum weight optimal design of aircraft structural components subjected to compressive
loads. Other applications involved the plastic collapse design philosophy which allowed
for planar frame structural optimization problems to be formulated as linear programming
problems [Hey51, Fou54, Pra56, and Liv56]. Perhaps the first person to recognize that
certain structural optimization problems could be treated as nonlinear mathematical
programming problems was Klein [Kle55], who recognized the importance of considering
inequality constraints in the problem formulation. There is no argument, however, that the
precursor to today's applications of optimization was Schmit's pioneering work in 1960
[Sch60] in which he set forth the structural synthesis concept. In this work, Schmit
introduced the concept of coupling structural analysis and nonlinear mathematical
programming to create an automated optimum design capability that was applicable for a
broad class of structural systems.

The 1960's saw efforts focus in two main areas involving component type
problems [Sch65, Kic68, Str69] and the development of structural synthesis programs
based on coupling finite element analysis and nonlinear mathematical programming
concepts [Gel66 and Kar68]. One of the most significant efforts during this time was

Morrow and Schmit's work in 1968 [Mor68], involving the minimum weight design of
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By the early 1970's it had become apparent that the mathematical programming
approach to structural optimization resulted in inordinately large computational times, thus
making the approach impractical for industria}lﬂ applications [Gel71]. This realization
provided the motivation for improving mathematical programming efficiency and renewing
interest in optimality criteria methods. The early 1970s also saw the beginning of
interdisciplinary design research [Gil72 and Ful73]. = -

The introduction of approximation concepts [Sch74] in 1974 led to mathematical
programming based structural synthesis methods [Haf76 and Sch76] that were markedly
more efficient than their predecessors. The state-of-the-art today continues to build upon
these early developments, specifically with the intent of increasin g computational efficiency
and versatility of applications.

Recent interest in the problems associated with multidisciplinary optimization is
evidenced by an increased number of cbﬁfcr‘ences, journals, and publications devoted to the
subject. Numerous papers have been published recently which deal specifically with
multidisciplinary optimization applications in such diverse areas as naval structural design
[Dhi84 and Hug84], spacecraft design [Fer84], rotorcraft design [Miu84], automobile

design [Pra84], and aircraft design [Sen88]. The proposed methodologies to deal with the
multidisciplinary design problem have been almost as diverse as the applications and have
mostly proved disappointing.

The intuitive practice of breaking a large task into smaller, more managéable tasks
was applied in Sobieszczanski-Sobieski [Sob82a] in which a linear decomposition method
was applied for hierarchic environments only. Early attempts to solve the non-hierarchic
problem involved wrapping an optirmization loop around the contributing disciplinary
analyses [Kro88]. Unfortunately, the approach was computationally prohibitive and
tended to exclude human intervention and decision-making. The Global Sensitivity

Equation method demonstrated in Sob90, Sob88b, and Blo87 extended the modularity
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concept of Sob82 to include applications in the non-hierarchic environments existing in
multidisciplinary problems and represented the state-of-the-art in the field as of 1990.

Two review papers in the field of multidisciplinary synthesis are particularly
noteworthy. The requirements and opportunities available in multidisciplinary analysis and
synthesis applications are reviewed in Tolson [Tol85]. The potentials and achievements of

multidisciplinary optimization are reviewed in Sobieszczanski-Sobieski [Sob89].
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DESIGN PROBLEM STATEMENT AND METHODOLOGY

Optimél design is concerned with achieving the best design according to some
prescribed criteria while satisfying certain associated restrictions. Wilde [Wil78] defines
the optimal design as being the best feasible design determined by some prescribed
quantitative effectiveness measure. The motivation behind optimization applications is to
exploit the available limited resources in such a way as to maximize output [Haf90]. As an
example, a typical objective of an optimization application in the field of structural design is
to determine the minimum weight structural configuration subject to restrictions on stresses
and displacements. The importance of minimum weight design of structures is especially
crucial to the aerospace industry where aircraft designs are controlled more by weight
considerations than by cost.

The concept of optimizing a structure implicitly suggests that there is some freedom
to change the structure. This is accomplished by changing a given set of design variables
over some prescribed range. Design variables can be either discrete or continuous in
nature. A continuous design variable has some range of variation in which it can assume
any value; a discrete design variable can only assume a value from la specified list of
potential values. A change in the design vaﬁﬁbles results in some change in the overall
design response, either in the objective function or in the problem constraints.

The objective function is essentially a merit function that has some explicit or
implicit relation to at least a subset of the design variables, and can be improved through
manipulation of those variables. In a structural optimization problem, for example, the

objective function would be structural weight, which would be influenced by design
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variables associated with structural member sizes. Typically, in realistic optimization
applications, limits exist on both design variables and some response functions that are
dependent on at least a subset of the design variables. These limits are referred to as
constraints. Upper and lower limits on the design variables are side constraints.
Constraints which impose upper or lower limits on the quantities that are dependent upon a
subset of the design variables, are by their very nature inequality constraints. Limitations
which place exact value requirements on these quantities are referred to as equality
constraints.

The notation that is adopted in this work for the objective function, constraints and

design variables is demonstrated in the following optimization problem formulation.

Minimize F(X)
Subject to gi(X) <0 j=1,...1
hy(X) = 0 k=1,..m
and X< x, < %" i=1,...n (3.1)

where (X) represents a vector of design variables, gj and hy are inequality and equality
constraints, respectively, and F is the objective function.

It is typical to normalize constraints in order to minimize potential mathematical
problems associated with wide variations in orders of magnitude. This is accomplished
through manipulation of the allowable limits that are placed on the response quantities of
interest. For example, a constraint might exist such that the calculated lateral tip
displacement of a cantilever beam must be less than a prescribed allowable limit. The
inequality constraint would be formulated (according to the representation of Equation 3.1)

as

u-ug<0 (3.2)
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where u is the displacement and uy] is the allowable limit. It is obvious that this constraint
formulation will have units associated with distance. To place the constraints on the same

basis so that constraint values are all of order one, a normalized representation can be made

as follows.

= 150
Uyl (3.3)

The normalized constraint representation of Equation 3.3 will be used throughout this

work.

In the comblex"éng"’i'nécrihg chign problem associated with a multidisciplinary

application, contributions to the design variables, constraints, and the objective function are
made from all the participating disciplines. The design variable and constraint vectors can

then be described in terms of partitioned vectors, where partitioned subsets are associated

with each discipline's contributions.

Synthesis Methodology

The general solution process for a gradxcnt—based opmmzanon problcm can be seen
parameters from Wthh an analysxs is performcd A scnsmvnty ana]ys1s is then carried out
to find the first derivative information of the output response quantities, such as the
objective function and constraints. This sensitivity information is then used in the gradient-
based optlmlzcr which results in an improved value of the objccnve functlon The process
is terminated when no further i 1mpr0vement in the object1§e function can be made without

violating the constraints. In a non-hierarchic environment, however, the design process

necessarily changes.
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Figure 3.1 Generic design methodology for gradient-based optimization.
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A non-hierarchic system is one in which the interactions between subsystem
modules cannot be distributed in a top-down hierarchy such as that demonstrated in Figure
3.2a. Non-hierarchic systems are characterized by subsystem analyses that are linked
through transference of output data, creating a complex network like that of Figure 3.2b.
The synthesis methodology for such a non-hierarchic system is shown in the flowchart in
Figure 3.3. The intrinsically linkéd subsysfem analyses must first be performed within an
iterative framework in order to obtain a converged initial point. A converged initial point is
defined as that point which satisfies the equations

SS1=0
552=0
SSN=0 (3.4)

where SSi corrcsponds to the analysis associated with the ith subsystem. Once a
converged initial point is obtamcd the sens1t1v1ty analy51s can bc performed. However,
due to the large number of analyses requxred in the process, computational expenses are
often cxorbltant . The available computer tools used to perform analysis in such complex
environments, such as structural or acrodynamxc analyses, are inevitably computatlonally
expensxve The piecewise linear optlmlzatlon approach or method of approximate
programming, is extremely useful in reducing these computational expenses.

In the method of approximatc prograrhming [Gri61]r, gradient information is used to
create an approximate optirhization problem that is solved in lieu of the fully nonlinear
problem, thus reducing repeated costly analyses [Sch76¢c]. The optimization is then carried
out in the neighborhood of the current design point. Move limits are imposed on the user
prescribed design variables during the optimization process; this is required in order to
maintain the integrity of the linear approximations of the output response quantities.
ﬁctefnﬁnation of move limit values is generally based on problem-dependent heuristics and

user experience.

i — s 1 i
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Figure 3.2a  Hierarchic system decomposition network.
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Figure 3.2b  Non-hierarchic system network representing subsystem interactions.
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Figure 3.3 Design synthesis methodology for generic non-hierarchic multidisciplinary

problems.
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Although several approximation techniques have recently been investigated for
application in this methodology [Sto74, Sta79, and Fad90], one of the most popular and
easiest to implement is based on a first order Taylor series expansion of the objective
function and constraints. Due to the fact that this information is already available for use in
the gradient-based optimizer, no additional effort is required. The linearized optimization

problem based on this type of approximation is of the form
Minimize  {F(R%)+(X-X)TVE(R)]

Subject to {gj()‘()+(x - )“()Tvgj(f()} <0
[+ x -%)"Vh, ()} =0

and X -a, <X, <X +B; (3.5)

where o and P are prescribed positive constants called move limits and X is the design
point about which the objective function and constraints are linearized. These move limits
effectively serve to limit the range of variation of the design variables. The optimal design
resulting from the approximate optimization problem of Equation 3.5 then forms the initial
point for the next cycle. The process is terminated when prescribed convergence criteria
are met.

For a highly nonlinear problem, it is essential that appropriate move limits be
established [Mor82]. By allowing the design variables to change only within some
percentage of the initial point, the inaccuracies introduced due to the linear approximations
are effectively controlled. An example of limiting the movement of the design variables in
this manner can be seen in Figure 3.4. A two-dimensional design space is shown with
lines of constant objective function and the constraint boundary defined. A larger move
limit, as seen in case B, results in a greater error than that associated with case A due to the

linear approximations.



X5 1}
N
VAR
= const

x0
F(X)

/
gi1(X)

Figure 3.4  Effect of Hmiting design variable movement in two-dimensional design
space.
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The need for restrictive move limits in certain optimization applications can be
demonstrated in the design of a rectangular beam for minimum weight subject to stress
limitations, where the design variables are the depth and width of the rectangular cross-
section. The displacement, load, and stress relations will be represented as scalars in order
to demonstrate proportionality relationships. The load-displacement relation can be

expressed,

Ku=P (3.6)

where P is the applied load, u is the displacement and K is the stiffness. The stiffness can

be replaced by (c I) to obtain

(cDu=P (3.7
where ¢ is a constant and I is the moment of inertia. The displacement is now expressed,

u=P/(c]) (3.8)

Stress is defined in terms of a constant, S, and the displacement as follows.

c=Su 3.9

Substituting the previous expression for displacement in Equation 3.9 yields

c=SP/(c]) (3.10)

The moment of inertia for the rectangular section is defined in terms of the width (w) and

depth (d) as,

I=(1/12) wd3 (3.11)
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Substituting this expression into Equation 3.10 yields a relation for stress in terms of the
design variables as,

6=12SP/(cwd3) (3.12)

From this expression it can be seen that the stress is proportional to the inverse of one
design variable and the inverse of the cube of the other. This results in nonlinearities
requiring small move limits to preserve the validity of assuming a linear behavior in the

stress response.
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CHAPTER 4
SENSITIVITY DETERMINATION

Sensitivity Analysis Overvi

The first step in the analysis of a complex structure involves a discretization of the
continuum equations into a finite difference, a finite element, or similar model. The
analysis problem then requires the solution of algebraic equations, ordinary differential
equations, or eigenvalue problems, depending on the response quantities involved.
Determination of sensitivity required in the optimization involves a mathematical problem of
obtaining the derivatives of those equation's solutions with respect to their coefficients
[Haf90].

The sensitivity analysis is typically the most computationally expensive aspect of
the optimization process. It is therefore essential that efficient approaches for sensitivity
evaluation be used in the design process. Numerous techniques exist for the evaluation of
these derivatives, with one of the most popular being the finite difference approach.
Unfortunately, this approach is the most computationally expensive and often has accuracy
problems. Other techniques that are commonly used are the analytical and semi-analytical
approaches. A recently developed approach is the Global Sensitivity Equation (GSE)
method [Sob90], which has significant advantages in complex engineering problem

applications. These approaches will be reviewed in the following sections.
E- . E » Eﬁ ! ) ]

The finite difference approach is one of the most popular techniques for determining

sensitivity information due to the simplicity of implementation. However, the approach is
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computationally expensive and is often plagued with accuracy problems. The simplest
finite difference approximation is the first-order forward difference approximation. Given
some function u(x) of a design variable x, the forward difference approximation (Au/Ax) to
the total derivative (du/dx) is

_Z_S_B: u(x + Ax) — u(x)
Ax Ax 4.1

Another commonly used difference approximation is the second-order central difference

approximation expressed as

éﬂ- u(x+ Ax)—u(x — Ax)
Ax 2Ax 4.2)

The finite difference approach requires perturbing the design variable by some
prescribed amount, determining the function value associated with that perturbation, and
then formulating the approximation according to Equation 4.1 or 4.2. Accuracy problems
associated with this formulation are due to truncation and condition errors. When the finite
difference approach is used to determine sensitivities for a complex coupled engineering
problem, the synthesis methodology is modified to include an outer convergence loop as
seen in Figure 4.1.

One of the major flaws of the finite difference approach is the possibility that the
effect of a small perturbation may be lost when filtered through a set of analyses iteratively.
For example, in a space truss with over five hundred structural members, is it really
possible to deterﬁﬁﬁé the variaﬁon m the tip displacement due to a 1% change in the area of
a member at the root? If large perturbations are used to avoid this problem, it is possible

that nonlinearities would yield imprecise sensitivity information.
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Analytical Approach

Analytical derivatives are based on obtaining algebraic or differential equations for
the sensitivities by analytically differentiating the governing equations. Although this
approach is advocated by most researchers, the implementation is often difficult, especially
when the functions under consideration have an implicit dependence on the design
variables, and even that, in many cases, is enveloped in complex software packages. The
modifications required to obtain analytical derivatives in such circumstances are often
extremely difficult, and sometimes result in computational costs which exceed even the

finite difference approach.

Implementation of the analytical method for the determination of first-order
derivatives of static displacements is as follows. The equilibrium equations are generated

from a finite element model in the form

(K] {u} = {P) 4.2)

where [K] is the stiffness matrix, {u} is a vector of nodal displacements, and {P} is a load
vector. A static displacement constraint can be expressed in terms of the nodal

displacements and a design variable, x, as

g({ul,x) <0 4.3)

Applying the chain rule of differentiation yields the expression
dg _og, og dlu]
dx 9Jx ofu} dx (4.4)

The first term on the right hand side is generally zero, leaving only the second term which

must be evaluated. Differentiation of Equation (4.2) with respect to x yields the expression
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d{u} o{P} d[K]
= - {u}
dx oJx dx (4.5)

[K]

Premultiplication of both sides of Equation (4.5) by the term

98 gy
o{u} (K]

yields the expression

dg d{u) _ og [K]—l(@-gl{l{u])

dfu} dx  dfu} ox  dx (4.6)

The solution of Equation (4.6) can be achieved by either the direct or adjoint method

[Haf90] yielding the analytical derivative for the constraint g({u},x).
mi-Analytical A h

The semi-analytical approach, as the name implies, involves a combination of
analytical and non-analytical methods. The analytical approach requires derivatives of the
stiffness matrix and load vectors with respect to the design variables. These derivatives are
often extremely difficult to obtain, especially when complex software packages such as
finite element programs are used. In the semi-analytical approach, the derivatives of the
stiffness matrix and load vectors are approximated by finite differences. The derivative of
the stiffness matrix with respect to a design variable, x can be approximated by a forward
finite difference representation, for example, as

d[K] _ [K(x +Ax)]-[K(x)]
dx Ax 4.7)
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A similar expression can be written for the derivative of the load vector with respect to the
design variable. However, in typical static structural analysis problems, this derivative is
generally zero.

Although the semi-analytical approach is as efficient as the analytical approach, due
to the inclusion of approximations made by application of the finite difference technique,
the resulting derivatives are subject to some of the same accuracy problems associated with

the finite difference derivatives.

The Global Sensitivity Equation (GSE) approach involves defining total derivatives
of the output response quantities in terms of local sensitivities of the outputs of each
subsystem with respect to that subsystem's inputs. Although the local sensitivities are
determined by a finite difference approach, these sensitivities are calculated within each
subsystem, thus removing the need of an outer iterative loop that would introduce
unacceptable inaccuracies into the solution. The method is particularly applicable for

cbrﬁprlrcxwénginéering problems in which 'ﬁuxﬁé'rousrcouplcd subsystems exist. A detailed

development of the GSE Method is presented in Chapter 5.
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CHAPTER 5
FORMAL AND HEURISTIC SYSTEM DECOMPOSITION METHODS

A generic development of the Global Sensitivity Equation (GSE) method,
Concurrent Subspace Optimization (CSSO) method, and Concurrent Subspace

Optimization - Embedded Expert System (CSSO-EES) method is presented.

Formal Methods

Two methods are introduced that provide a vehicle for automated design of
complex, coupled engineering systems. Both methods are strictly algorithmic in nature,
making use of problem-dependent heuristics only to the extent of initializing parameters
prior to implementation of the design process. A development of these two formal

approaches to system decomposition for design and optimization is presented.

Slobal Sensitivity Equation Method

The Global Sensitivity Equation approach is a methodology for obtaining the total
sensitivity of the output response quantities of each subsystem with respect to the design
variables of each subsystem. The total derivative information thus obtained is utilized in
constructing the approximate optimization problem described in Chapter 3. The design
variables and constraints from each subsystem are considered at the system level in an ‘all-
in-one' optimization within the context of the piecewise linear approach.

The underlying concepts in this formal approach for decomposition are simple and

make use of the fact that the first derivative of a nonlinear function at a point is equal to the
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first derivative of the function linear approximation at that point. Consider the case of two
disciplines A and B, the interactions between which are illustrated schematically in Figure
5.1. The analysis equations for the two disciplines can be expressed in a symbolic form as
follows.
A((Xa,Yp), YA)=0

B((Xg,Ya), Yg)=0 G.1)

Here, XA and XB are the variables local to the system A and B, respectively. YA is the

output vector for the system A and, in the most general form of coupling, this vector acts as
a set of auxiliary input variables for system B. Similarly, YB is an auxiliary set of input

variables for system A. Thus, the variables YA and YB provide the coupling between the

two systems. It is possible to rewrite the above expressions in an explicit form as follows.
YA = (X A s YB)

Yp=(Xp,Ya) (5.2)

A first order Taylor series representation allows us to write,

dYy Y,  9Ya dYp
dX, 90X, 0Yg dX,

dYg _ dYg + dYg dY,
dXp aXB aYA dXp (5.3)

The chain rule can be applied to Equation 5.2 to obtain two more equations of the following

form.
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dY, _0Y, dvy
dXp dYg dXp

dYg _dYg dY,
dXA aYA dXA (5.4)

These equations can be rei)rescntcd in a matrix notation as follows.

aY 'dYA
I - —A ‘ aYA
¢ . 19 [T BJéA
| 9Ya J{dXa
[ Y, ](dYA
I - - 0
dYp <‘31)\(,B ~1oYg
| dYa J1dXp (5.5)

Note that the total derivatives dYA/dXA dYA/dXB, dYB/dX3, and dYB/dXB can
be solved from the above set of equations if the partial sensitivity derivatives that appear in
the coefficient matrix and in the right hand vector are known. These partial sensitivities can
be computed locally within the system, eliminating the need to perform computationally
expensive interdisciplinary iteration. This also diminishes the possibility of errors
associated with round-off and truncation in the iterative process, from having adverse
effects on the quality of the sensitivity results. It is worthwhile to note that the output from
the analysis of one discipline may contain data that has no influence on other disciplines.
As an example, the output from a structures analysis may include modal and frequency
information that is péssed as input to both acrbdynamics and flight mechanics disciplines.
However, it may also include data such as the objective and constraint function information
that is not passed as input. Although this data has no influence on the analyses of the other

disciplines, including it in the output vector yields total derivative information directly from
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the solution of the GSE. Post-processing to determine the derivatives of these output
response quantities is, thus, unnecessary.

Since the Global Sensitivity Matrix (GSM) is a function of local sensitivities of
outputs to inputs which can be obtained within each discipline independently, the approach
essentially permits a decoupling of large systems into smaller subsystems. The sensitivities
obtained from the above analysis can be used to develop linear approximations to the output
response of each subsystem, which can be subsequently employed in the gradient-based
piecewise linear optimization process. However, due to the complexities of large
engineering problems, the dimensionality of the local sensitivity matrices may be
prohibitively large for repetitive decomposition in an optimization sequence, and may

contribute to substantial reductions in the numerical efficiency.

. Sl Outimizasion Method

The Concurrent Subspace Optimization (CSSO) method permits the decoupling of a
large engineering system into smaller subsystem modules in order to achieve concurrent
optimizations in each of these subspaces. This method essentially takes the concept behind
the Global Sensitivity Equation method one step farther, performing not only the sensitivity
analyses within each individual subsytem, but the optimizations as well. Unlike the
conventional method of subspace optimizations, however, the proposed method eliminates
the need for a full analysis in each subspace, thereby providing potential computational
savings. The method is particularly well-suited to applications in a design organization
setting in which tasks are distributed among groups of specialists representing physical
subsystems and disciplines.

The evolution of optimization techniques has resulted in quite diverse and largely
discipline-dependent approaches. Certain algorithms are often totally dependent upon the

unique physics associated with the discipline in question. For instance, optimality criterion
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methods are specifically tailored for structural weight minimization applications. Hence,
certain of these discipline-dependent optimization techniques may not be applicable within
the framework of a traditional system level optimization approach based on sensitivity
information. The main motivating factor behind use of the CSSO, therefore, is the ability
to take advantage of the discipline-dependent algorithms within each subspace optimization.
Implementation of the CSSO progresses as seen in Figure 5.2. A system analysis
is first performed in which contributing analyses, or subsystems, are first defined in order
to obtain behavioral response sensitivities by application of the GSE. Constraints in each
subspace are represented by a single cumulative constraint measure, C, by means of a
Kresselmeier-Steinhauser (K.S.) function [Haj82].
The cumulative constraint can be written
C= 1 In [m exp(p-gj)]
P L=t (5.6)
where m is the number of constraints being represented in the cumulative constraint
formulation and p is a user-prescribed constant. A smaller value of p allows more
constraints to participate in the cumulative constraint representation while a larger value of
p allows the most critical constraint to dominate. The derivative of this representation with

respect to the design variable Xj may be determined analytically as follows.

% [,ge""(" ) ]_l[jg{%e’(p(p ) H

1 1

5.7)

The design variables are then allocated to the subspaces on which they have the
greatest impact. This allocation is based on the sensitivity of the cumulative constraint and

on the sensitivity of the objective function with respect to the design variables in the form
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of effectiveness coefficients. Effectiveness coefficients [Haj81], eij, essentially quantify

the impact of a particular design variable, Xj, on the design at a point and can be written,

dg/
dX;

€=
J d%xi (5.8)

where, gj are the inequality constraints and F is the objective function. In order to
determine the overall effectiveness of a design variable with respect to all design constraints
simultaneously, it is necessary to rewrite Equation 5.8 in terms of a cumulative constraint.

The effectiveness coefficients are now redefined in terms of only one subscript as,

dC

e;= dFdX
/ dX; (5.9)

Once effectiveness coefficients are determined for all subspaces, a rank-ordering procedure
is used to determine the subspaces for which design variables have the greatest impact.
For instance, in a two subspace system, effectiveness coefficients associated with each
design variable and with the cumulative constraint for each of the two subspaces, would be
determined. If a particular design variable is found to have a smaller effectiveness
coefficient value (larger impact) for subspace 2 than for subspace 1, it is then allocated to
subspace 2. Allocation of the design vgriables to the subspace upon which they have the
greatest impact avoids potential divergence of the CSSO method.

Following design variable allocation, temporarily decoupled optimizations are
performed in each subspace concurrently. The goal of these subspace optimizations
(§8SOs) is to reducc; the yiolation of the cumulative constraint with the least increase of the
system objective function or greatest decrease if the cumulative constraint is already

satisfied. Essentially, the violated cumulative constraint is reduced only by some fraction,
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with the other SSOs responsible for reducing the remainder of the violation. It is necessary
that a feasible solution be obtained at the completion of the SSOs so that a constrained
minimum exists. If such a result is not possible due to an initially infeasible design and
restrictive move limits, constraint reduction techniques must be applied [Bar88].

The subspace optimization problem can be stated as follows,
Minimize F(x¥)
Subject to Cp<Cp°[sp 1 -1 ( —sp tE] p=1,NSS

Xk < Xk <XE (5.10)

where s, I | and '  are coefficients representing Cross influences of one subspace on
another. Since the subspace optimizations are decoupled, with only subsets of the system
design variables in each subspace, it is essential that some form of coordination exist
between subspaces. The coordination coefficients perform this duty.

The « cocfficient represents the 'responsibility’ assigned to the kth SSO for
reducing the violation of the cumulative constraint in the pth SSO. Even though design
variables have been allocated to the subspace on which they have the greatest impact, it is
easy to imagine how these variables would still have an effect on constraints of other
subspaces due to the couplings which exist in the non-hierarchic system. It then becomes
necessary to account for this effect during the subspace optimizations. The r,  coefficients
essentially divide the responsibility for satisfying constraints amongst the subspaces
according to the impact of the design variables within each subspace on the cumulative
constraint.

The initialization of the ¥ . coefficients is based on the system sensitivities
determined by the GSE. The sensitivity of the pth cumulative constraint with respect to the

design variables associated with the kth subspace, is represented by the relation,
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P
o= 9O i=1,nxk
dX; (5.11)

where, nxk is the number of design variables in the kth subspace. A matrix of cumulative

constraint sensitivities is formed as follows.

p=1 - p=§
CORCa
. i i .
k=1 ' 11
. |Coa i 1CY,
J= S-S TN -
P
i |
cle 1 il
k=& ¢ 1.0 ¢
1€ 1 1 EE
_Cnx§ ! !CanJ (5.12)

where, & is the total number of subspaces and nx§ is the number of design variables

allocated to the Eth subspace. A variable, v¥,, can be defined in terms of the maximum

absolute value of sensitivities for each subspace. This variable corresponds to each

column, p, of matrix J, as follows.

pk
)

)]
! (5.13)

Scaling the v¥ ¢ values such that the sum of the values over k for each column is unity,

p_

maxk{maxi(

yields the r*, values as follows.

1
= vP p=1E

k (5.14)
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Figure 5.3a demonstrates the responsibilities assigned to Subspaces 1, 2, and 3 for
satisfying the cumulative constraint associated with Subspace 3. The responsibility
coefficients for a particular ‘p' constraint must equal 1.0 over all subspaces k. This
essentially means that 100% of the responsibility for satisfying a subspaces cumulative
constraint must be accounted for.

The tpk coefficient represents the ‘trade-off’ associated with each subspace that
allows for the violation of a constraint in the pth SSO in order to obtain a reduction of the
objective function, provided that the constraint will be oversatisfied in the kth SSO. Sucha
trade-off can occur only when the present and previous optimization cycles have produced
satisfied constraints. Figure 5.3b demonstrates the trade-off in constraint satisfaction
which might occur amongst three subspaces. It is essential that any violation that is
permitted be compensated in other subspaces so that the sum of all trade-offs across the

P

subspaces is zero. The 'switch' parameter, s ,is responsible for enabling or disabling the

r K OT d  coefficients depending on whether the constraints are initially violated.

Following the subspace optimizations, a new constrained minimum point is
defined. Due to the fact that the SSOs are formulated in terms of the coordination
coefficients, T , and tp . the new optimal point is dependent on these variables. Therefore,
it is possible to mathematically determine the sensitivity of the system objective function, F,
to these variables by implementation of an optimum sensitivity analysis (OSA). Such an
analysis is dependent upon Lagrange multipliers, which are defined in terms of the Kuhn-
Tucker conditions [Van84].

At a constrained optimum, where X* defines the optimum design, the Kuhn-
Tucker conditions require that,

1
VF(X*)+ T4, V8(X¥)+ Thicym Vhic(X*)=0

j=1 k=1 (5.15)
and

o (X*¥)= - .
ngJ(X) 0 j=1,m and lJZO (5.16)
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where A; and Ak+m are the Lagrange multipliers associated with the inequality and equality
constraints, respectively. As can be seen from equation 5.15, only one Lagrange multiplier
corresponds to each constraint. Equation 5.15 can be written for the case of no equality

constraints and in terms of just one cumulative constraint, C, as follows,

dF Y dC -0

* k *

where k represents the kth subspace. As previously described, in each subspace
optimization, the system objective function is minimized with respect to a subset of the
design variables and subject to constraints (defined in terms of the coordination
coefficients) which are associated with each of the subspaces, thus yielding & constraints
per SSO. Therefore, distinct values for F* are obtained in each subspace following the
subspace optimizations.. Hence, Lagrange multipliers can be found corresponding not
only to each constraint, but also to each subspace. This dictates a slightly different
treatment of the Kuhn-Tucker conditions. Equation 5.17 can be rewritten to include

consideration of each constraint in the SSO within the kth subspace as,

p
dF,. + %x‘l’( dc =0
dX

1
p=1 -~ Xk (5.18)

Rewriting this expression in matrix form, it is possible to obtain a relation for the Lagrange
multipliers as a function of constraint and objective function gradients associated with each

subspace from Equation 5.18 as follows.
-1
[”=_[dc]T[ac] [dcﬁdx:]
KT ax¥ ] Lax¥]| Lax¥) Laxk

Here, [Ay] and [dC/dXk] are partitioned matrices of the form,

(5.19)
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] = L, A2, A 8T and  [dC/dXK] = [dCY/dXk,dC2/dXE,...dCY/AXK]T  (5.20)

Once the Lagrange multipliers are obtained, the optimum sensitivity of F simplifies to,

(5.21)

where z; is a variable representing either r° L OF tf "

The derivative information obtained in the OSA is now used in the coordination
optimization problem (COP) in which the system objective function is minimized with
respect to the r i and t? , coefficients. Completion of the COP yields new coefficients for
use in the next SSO. The coordination optimization problem is defined in the following

manner.
Minimize F(rf tf)

Subject to SrP=

P P< P p PP
T ST STy and  tp, StEsty (5.22)
Following the update of the coefficients, the entire process is repeated until prescribed
convergence requirements are met.

Certain advantages and disadvantages of the CSSO can be identified based on the

performance of other decomposition-based algorithms. Due to linearizations which exist in

both the SSO and the COP, move limits may be somewhat restrictive, depending on the
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problem parameter sensitivity resulting from the OSA may be in error if active constraint
switching occurs. The theorized merits of the approach, however, far outweigh the
identified disadvantages. The most important feature of the CSSO is the fact that the
modularity of the method allows for the efficient decoupling of the system to permit
concurrent sensitivity analyses and subspace optimizations that can correspond to specialty
groups within an organization. Further, the approach is particularly amenable to human
judgement and intervention or the application of an artificial intelligence based expert
system. These advantages and disadvantages are discussed in more detail in following

chapters.

A method is introduced that couples algorithmic and heuristic concepts to permit the
‘intelligent’ automated design of non-hierarchic systems. The method makes use of
problem-dependent heuristics in the form of an embedded expert system capability. A
development of this heuristic approach to system decomposition for design and
optimization is presented.

Integration of the algorithmic aspects of the CSSO method with problem dependent
heuristics is achieved with an embedded expert systems capability. The inference envi-
ronment used is the 'C Language Integrated Production System' (CLIPS) [Gia89]). CLIPS
is invoked in an embedded mode from within a FORTRAN program, thus providing a
convenient link between procedural and heuristic processing of information.

CLIPS is an expert system shell comprised of three basic components - the fact-list,
the knowledge base, and the inference engine. The facts (which are entered into a fact-list)
in a CLIPS program are the data that stimulate the execution of the rules. They are entered

into the fact-list with an assert command as follows
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(assert  (factl))

The fact within the inner set of parentheses can be composed of more than one field, with

the first field quite often reserved to demonstrate a relation amongst the following fields, as

in the example

(assert (constraint_value
less_than_zero equal_zero greater_than_zero))
The defined rules use the asserted facts in the fact-list to make a program execute.
The CLIPS format of these rules is analogous to an IF THEN statement in procedural

languages. An example of such a pseudocode statement is

IF the value of constraint is less than zero
THEN the constraint is feasible.

The CLIPS format for this rule would be

(defrule constraint_status

(assert (constraint_value less_than_zero))
=>

(assert (constraint_status feasible)))

where the left hand side (LHS) of the rule contains the patterns (i.e. (constraint_value
less_than_zero)) and the right hand side (RHS) contains the actions (i.e.
(constraint_status feasible)). The rule is activated and put on the agenda if all the patterns
of a rule match facts in the fact-list.

The knowledge-based problem solving system involves three basic levels of
organization - the function, knowledge, and program levels [Ton87]. The function level
corresponds to actual design implementation, the knowledge level contains detailed
description of the design domain, and the program level contains the mechanics of
implementing the design steps. Figure 5.5 demonstrates the organization of tasks with

respect to these levels in the problem solving system previously described. The
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implementation of these features is shown in the flowchart in Figure 5.6, in which the
modified heuristics-based CSSO is shown. The specific applications of the embedded
expert systems capability include the allocation of design variables among subspaces, the
determination of optimization parameter values, the assignment of move limit values for
efficient convergence, and the determination of coordination coefficient values. These
tasks, which form the basis for the CSSO-EES method, are examined in more detail in

Chapter 7.
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CHAPTER 6
ANALYSIS METHODOLOGY AND MODEL DESCRIPTION

A description of the design" objectives, application model, and analysis

methodology is presented for each decomposition approach.

The objective of the synthesis process is to find the minimum weight configuration
of a general aviation aircraft (Figure 6.1) subject to design limitations derived from
structural integrity and aerodynamics/flight mechanics performance characteristics. Design
variables contributing to the fulfillment of the optimization objectives stem from planform
geometry and sizing of the aircraft. The non-hierarchic multidisciplinary environment of
structures, aerodynamics, and flight mechanics is represented in terms of distinct analysis
modules as seen in Figure 6.2. Each discipline module has inputs in the form of design

variables that are intrinsic to that discipline as well as output data from other disciplines.

Application Model

The finite element analysis model for the structures discipline, with representative
node and panel numbering, is shown in Figure 6.3. A stick model of the fuselage and tail
structure represented by beam elements is connected to a built-up membrane/stringer model
for the wing structure. A symmetric half of the structural model is used with a total of four

handred and twenty-six degrees-of-freedom. Definition of the aerodynamic model is in
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Figure 6.1 Three view of general aviation aircraft.

Source: J. Roskam, Airplane Fli i matic Fligh 1

(Roskam Aviation Engineering Corporation, Lawrence, Kansas, 1979, p.
590).
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accordance with the input requirements of an unsteady doublet lattice program ISAC
[Pee79], and is shown in Figure 6.4. This figure also shows the discrete structural and
aerodynamic analysis models used in this effort. A beam representation for the fuselage is
retained. A lifting surface, defined as the aggregate of the upper and lower surfaces of a
wing with a NACA 2412 airfoil, is modeled with plate elements. A similar approach is

used to model the horizontal and vertical tails.
Analysis Methodology

Structures Subsystem, The equation for the free vibration eigenvalue

problem associated with the structures subsystem is,

((K]- o} [M]}{0}; =0 (6.1)

where {¢}i and w2 are the eigenvector and eigenvalue for the ith mode, respectively.

Generalized mass and stiffness matrices are defined as,

[M] = [6]' [M][¢] (6.2)
and

[K]=[o]'[K[6] 6.3)

where the modes are normalized with respect to the mass matrix such that,

[M]=11] (6.4)

The equations of equilibrium for linear static structural analysis are written as,

[K}u} ={P} (6.5)
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where {P]} is the applied load vector. The element stresses are defined in terms of the

nodal displacements as,

{o} =[SKu} (6.6)

where [S] is the stress transformation matrix.

All structural analysis pertinent to the problcrﬁ is performed using the finite element
program ‘Engineering Analysis Language' (EAL) [Whe-83].r EAL is a high-order language
with primary applications in analysis and design of solid and fluid systems based on a finite
element representation of the analysis domain. Individual processors communicate through
a data base containing information describing the finite element model of the structure, as

well as data accumulated during execution of the runstream.

Acrodynamics and Performance Subsystem. In terms of primary structural

coordinates, x, the equation of motion for a structure subject to aerodynamic loading can be

written as follows.

[Mes? +(1+ig)Mg? +9.Q} ¢ = 9.QF 67)

Here, the superscripts M and G denote quantities associated with the motion and gusts,
respectively, and g is the structural damping coefficient. The gust time history is modeled

as a deterministic sharp-edged gust. The generalized aerodynamic force matrix is defined

as,

[Q(k,Ma)] = [6]" [AP(k,Ma)] (6.8)

where k is the reduced frequency, Ma is the Mach number and AP is the differential

pressure over the surface.
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Performance requirements are defined as constraints in the optimization problem,
and are determined from well documented relations [Per49]. The stall velocity is found

from the relation,

1/2
V’=[—}CW_S}
Pabran® (6.9)

where W is the weight of the aircraft at take-off, pa is the density of air at sea level, and S
is the wing area. Another performance requirement is the landing distance over a fifty foot

obstacle, and is calculated by summing the distance in the air Da, and the distance on the

ground D¢, where
2 _y2
D, =Ev_[zm_v_L R 50}

FL 2 (6.10)

and
2
DG == VY
2a 6.11)

The quantity (W / F) is the average resistance coefficient, a is the uniform deceleration on
the ground, VL and V5 are the velocity at landing and at a fifty foot height, measured in

ft/sec. Similarly, the take-off distance over a fifty foot obstacle (D10 ) is found from,

100K 1000
Dro= T a
9 3 (6.12)
where
2
K=SHPVZI T
Lto (6.13)

and HP and I are the rated horsepower of the engine and the ratio of air densities,

respectively, and Cr1o is the lift coefficient at take-off.
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Breguet's Formula is used to determine the range. Based on the assumption that all
fuel is used, the range R, in miles, can be expressed as,
rR=375CL Nl W
Cpb F | W

P (6.14)

where N is propeller efficiency factor, F is the specific fuel consumption, and Wy, is the

difference between the take-off weight and the weight of :the fuel.

Stability and Control Subsystem., A first order state space representation is used for

the analytical model of the flight mechanics subsystem. The equation of motion for a
structure with active controls and subject to time varying airloads can be written in terms of
airloads Q; and modal displacements q; as follows,

M;d; (1) + 0?Mg; (1) + iQani(t) =—Q;50(t) — q;(t)wg (t)
= (6.15)

where (1) is the control surface deflection and wg(t) is the gust velocity.

The dimensionality of the modal matrix is determined by the number of modes that
are deemed necessary to model the structural displacements and other system degrees-of-
freedom. Since the lower modes are dominant in representing the displacements, typically
only the first six to ten modes are used in the analysis.

The first order state-space representation of the governing differential equations for

the open-loop system can be written as follows,

{x}=[A}{x}+[B]{u}+[H]{n} (6.16)
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where A is the system dynamics matrix, B and H are the control and gust distribution
matrices, respectively; x is the state variable vector; u is the control input vector, and n is

the gust vector.

In terms of the state vector X, the system output y can be written as,

(y} =[Cl{x} 6.17)

where the [C] matrix contains information specific to the location of the sensors. The
output vector is of length s, where s is the number of sensors present in the system.
The optimal state feedback control law can then be found as a function of the gain

matrix as follows.

(u} = -[G}{x) (6.18)

The use of this relationship in Equation 6.16 yields an expression which allows the
determination of the optimal state for the closed-loop system. A time-marching method is
used to determine the time history for the state variables. Onbe the state solution is known,
the dynamic displacements can then be retrieved for each degree-of-freedom. The control
input resulting from this analysis is used to determine the mass of the physical control
system. This mass is used as an input to the structural system and directly influences the
structural dynamic characteristics.

The required stability derivatives for the stability and control analysis are obtained
through a semi-elastic stability analysis, which constitutes a modification of rigid body

stability characteristics to account for structural deformations. The relationship,

[K}{q}+a..[QKa}=0 | (6.19)
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between the stiffness matrix and generalized aerodynamic force matrix, [Q], yields an

elastic generalized aerodynamic force vector, { (_2}, as a function of rigid and elastic terms

Q, ={Q12}_ [le an]K -I{Qsz}
{622} 22 1= 23 "7 Q2n‘[ +me] Qn2 (6.20)

where n is the number of elastic and rigid body modes and the first two rows of [Q]

such that

correspond to pitch and plunge.
Selected stability derivatives are determined in terms of the semi-elastic generalized
aerodynamic force vector which are then used in the stability and control analysis to obtain

the eigenvalues of the characteristic equation. The time-to-half is determined from the

relation [Etk82],

0.69¢
Ypp=—F
g (6.21)
where { is the ei genvalue for the mode under consideration and,
RIS
2U (6.22)

defined in terms of the mean chord length ¢ and the velocity U.
The rigid-body stability and control analysis is performed using a modified version

of programs available in [Sme84].

c Subspace Optimization Methd
Desien Object

The objective of the synthesis process is to find the minimum weight design of a

truss structure subject to constraints derived from requirements of structural strength and
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stiffness. Design variables contributing to the fulfillment of the optimization objectives are
structural element sizing variables and a structural geometry variable.

The non-hierarchic environment which exists in the size/topology system is
represented in terms of distinct analysis modules as shown in Figure 6.5. Each subsystem
module has inputs in the form of design variables that are intrinsic to that subsystem as well

as output data from the other subsystem.
A pplication Model

The ten-bar truss structure in Figure 6.6 was used to demonstrate the feasibility of
the CSSO method. Two degrees of freedom (x and y) are permitted at each of the four
unconstrained nodes, thus yielding an eight degree-of-freedom system. The structure is

subjected to static loadings as shown in the figure.
Analysis Methodology

Subsystem 1 - Sizing The design variables for Subsystem 1 are the cross-sectional
areas of the ten truss members. The output vector for the analysis associated with the
subsystem contains the sizing variables, the objective function value, and a cumulative

constraint measure representing the static stress constraints. The vectors are written:

T
[Xss1} ={A1-Al0} (6.23)

and
T
{Yss1} ={A1.A10,W.Css1} (6.24)

Subsystem 2 - Topology The design variable for the topology subsystem isa

geometry variable, D, which controls the depth of the truss structure at the wall. The
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output vector from the analysis contains the geometry variable, the objective function value,
and a cumulative constraint measure representing the static lateral displacement constraints.

The vectors associated with the subsystem are written:

{Xss2}"={D} (6.25)
and
{Yss2} ={D,W,Css,) (6.26)

Inclusion of the design variables in the output vectors associated with both subspaces is a
special case. Here, the analysis of one subspace requires the design variables of the other
subspace as input variables, thus establishing a coupling between subspaces. All structural

analysis pertinent to the problem was performed using the finite element program EAL.

C Syt Optimization - Embedded E S Method
Design Objective

The design objective of the control/structures interaction (CSI) problem is to find
the minimum weight cantilever ten-bar truss structure subject to constraints on static
stresses, natural frequencies, and static and dynamic displacements. Design variables are
contributed from both disciplines and include truss member sizing variables and a controls
damping constant. Figure 6.7 demonstrates the subsystem coupling which exists in this

problem.

A pplication Model

The ten-bar truss structure in Figure 6.8 is used to demonstrate the effectiveness of
the CSSO-EES methodology. The truss is equipped with active controls to limit the

dynamic displacements to preassigned levels. Two degrees-of-freedom (x and y) are
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permitted at each of the four unconstrained nodes, thus yielding an eight degree-of-freedom
system,

The structure is subjected to static and dynamic loadings as shown in Figure 6.9.
The lateral dynamic displacements are controlled by four sets of hydraulic actuators placed
at the unconstrained nodes of the truss. The forcing function, f(t), is a ramp input applied

over a two second interval.

Analysis Methodology

Subsystem 1| - Structures The governing equation for the free vibration

eigenvalue problem associated with the structures subsystem is

([K]—miz[M]){q)}i =0 (6.27)

where {¢}i and wj2 are the eigenvector and eigenvalue for the ith mode, respectively and
the structural eigenvalue analysis is obtained from the finite element program EAL.

The design variables associated with the structures analysis are the cross-sectional
areas of the ten truss members. The output vector for the analysis associated with
Subsytem 1 contains the eigenvector and eigenvalue information, the structural weight, and
a cumulative constraint measure representing the frequency, static stress, and static

displacement constraints. The vectors are written:

T
{Xss1} ={A1Ap] (6.28)
and

T 2
Y = O, We,C
{Yss1} {w 9, Wg 531} (6.29)

Subspace 2 - Controls The equation of motion for an actively

controlled structure subjected to forced vibration can be written,
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[MIi}+[CHi}+ [K]{r}=[bo}{u} + [b]{f} (6.30)

where [b] is a matrix containing information concerning location of actuators, [b] is a
matrix containing applied load information, {r} is the displacement vector, {u} is control
input, and {f} is the dynamic forcing function. The damping matrix in Equation 6.30 is

traditionally represented by a proportionality relationship as follows,

[C] = o [K] + B M] (6.31)

where o and f are proportionality constants.
The first-order state-space representation of the governing differential equations for

the open-loop system can be written as,

{x}=[A}x} +[B){u} + [B{f} (6.32)

where {x}, {u}, and {f} are the state, control input, and forcing function vectors,
respectively, and [A], [B], and [B] are the plant, control, and forcing matrices. The state
vectors are defined in terms of the dynamic displacement, velocity and acceleration vectors

as follows.
fid= {;} and {x}= {%} (6.33)

A modal reduction technique is applied in which a modal transformation is made of the

form,

{r} =[¢](n) (6.34)

where {n} is the transformed displacement vector. The above transformation can be

applied to equation 6.30 to obtain,
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[MI{A}+[CHa}+ K]} =[o] o Hu} + [0 [B{E} (535,

where

M= [C]=[2tw] [K]=[o?] (6.36)

all of which are diagonal matrices.
In modern control theory, the control vector {u} is determined using a linear
quadratic regulator. The optimal state feedback control law is determined by minimizing a

quadratic performance index [Bry69] which is a function of the state and control vectors

such that,

PL=[5 ({x}"[Ql{x} + {u} [R{u} )i (6.37)

where [Q] and [R] are arbitrary weighting matrices. The solution of the optimal control

problem yields the nonlinear algebraic Riccati equation [Bry69] as follows.

[AT'[P]-[PYBIR]"[B]'[P] +[P]A] +[Q] =0 (6.38)

The control gain matrix is defined in terms of the Riccati matrix, [P], the positive definite

solution to Equation 6.38, as,

[G]=[R]"'[B]'[P] (6.39)

The optimal state feedback control law can then be formulated in terms of the gain matrix to

yield the optimal control input such that,

{u} =-[G] {x} (6.40)
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The optimal state can now be determined by a time-marching method to yield the dynamic
displacements. The mass of the control hardware is expressed as an explicit function of the
control input. The controls analysis was performed through implementation of a package
of FORTRAN subroutines named 'Optimal Regulator Algorithms for the Control of Linear
Systems' (ORACLS) [Arm78].

The design variable for the controls subsystem was a damping variable, ¢, defined

as

; (6.41)

where {; is a damping coefficient. The output vector from the analysis contains the mass of
the controllers, the weight of the control system, and a cumulative constraint measure
representing the dynamic lateral displacement constraints. The vectors associated with the

subsystem are written:

{Xss2}' ={c} (6.42)
and
T
{Yssz} = {mcswc’CSSZ} (6.43)
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CHAPTER 7
IMPLEMENTATION OF SOLUTION TECHNIQUES

The implementation of solution techniques for the three system decomposition
method dre presented. The GSE applications center on strategies to increase effic’ency and
solution accuracy for large problems. The CSSO and its heuristic counterpart, the CSSO-

EES, are evaluated in terms of verification procedures to determine their feasibility.

1 nsitivi i

In the use of the GSE method for the design problem defined in the previous
chapter, the dimensionality of the global sensitivity matrix is of some concern. If each
subsystem represents a discipline in a multidisciplinary optimization problem, it is
conceivable that for a large number of outputs associated with each discipline, the
dimensionality of global sensitivity matrix can be potentially quite large. The system of
linear algebraic equations that are obtained by application of the GSE method can be

expressed as,

[D{w]}={v} (7.1

where [D] is the GSE partitioned matrix (GSM) containing the local sensitivity information
of each subsystem, {v} is a known column vector of partial sensitivities, and {w]} is the
unknown column vector of total derivatives. If the vector {w}, required in forming the
response approximations for each piecewise linear representation of the system, is obtained

by decomposition of [D], the process can become unacceptably expensive.
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Iterative Solution Techni

The present work adopts an alternative iterative solution to this system of equations,
where an initial approximation to the solution is assumed and is successively modified to a
converged solution. In this investigation, Gauss-Siedel iteration with relaxation is
implemented to encourage convergence.

Gauss-Siedel iteration is recursive in nature, as one repeatedly cycles through
solutions for the unknowns, which then replace the old values. The method, thus,
automatically makes use of the most recently calculated values for the unknowns, resulting
in large computer storage savings, as only one value for each unknown need be saved. A
point relaxation technique is implemented, wherein the calculated value of the unknown is

modified as,

w§m+l) - wl(m) + l(wgmﬂ)‘ _ wgm)) (72)

where A is the relaxation factor, (m+1) is the current iteration, and w;(m+D* is the value for

the unknown obtained by the Gauss-Siedel approach in the current iteration.

System Conditioning Evaluation
The level of ill-conditioning associated with matrix [D] is expressed in terms of a
condition number [Don77] which is defined as,

1D D1y (7.3)

Here, the first norm of [D] is used and has the form,

IDJ, = max 31d;l
o (7.4)
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The quantity Il D-11l; is estimated by the relation,

o] =
" "x vl (7.5)

where vector {y} is chosen and {z} is then determined from the system of equations,

[Dl{z}={y} (7.6)

The condition number is a measure by which the accuracy of the solution may be
gaged and is determined by the relative magnitude of the terms in the GSE matrix (GSM).
Since the components of the output response vector Y and the design variable vector X are
of varying magnitudes, it is necessary to scale the partial sensitivity terms in the GSM. A
normalization scheme was implemented to achieve this, and is most easily described by
considering two systems 1 and 2, with scalar intrinsic design variables and scalar output
responses. To determine the total derivatives of the outputs with respect to the design

variable of subsystem 1, the GSE can be written in matrix form as follows.

aY, |[dY

1 ——L=—L
ay, ||ax, || %
) A VA s

The partial sensitivities on the left and right hand sides of the equation are normalized as,

' _Y,9Y Y, _Y 9y, Y, _X, 0y
aY, Y, 0dY, aY, Y, dY, X, Y, 9%, (1.8)

yielding the normalized Global Sensitivity Equations.
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) A | 08 B
Y, dX, (7.9)

The unscaled behavior derivatives are then recovered from the scaled values by the

relationship,

4y, _ ¥, dy’ 4, _ Y, 4y,
dX, X, dX, dX; X, dX, (7.10)

lution Standard Deviation Comparison

The behavior sensitivities obtained from an application of the GSE approach, using both
direct decomposition and iterative methods, were compared with results obtained from a
forward finite difference approach applied to the coupled system. The percent difference in

the two solutions under comparison is written as,

Apg A% _ 4%,
X,  dX,
Kk = 1(X) X 1 zi'

MAX[ A%

i=1,NGSM and k=1,NX (7.11)

where NGSM is the dimensionality of the GSM. A variance of Perjx [Pre86] is then

defined as follows.

1 NGSM 2

NGSM & (Perc) (7.12)

Var(Per; , ) =
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A standard deviation measure of the variance is adopted for convenience and is defined as

follows.

a(Per;, )= [Vaf(Pefi.k )]”2 (7.13)

nstraint R tion Implementation

Constraints for the multidisciplinary synthesis problem described in the previous
chapter are as follows. Structural constraints were placed on the first and second natural
frequencies, on the eight lateral wing tip displacements, on the stress constraints for the
root section stringers and membranes, and on the internal volume of the wing box.
Aerodynamic performance constraints were placed on stall velocity, landing and take-off
distances over a fifty foot obstacle, and range. Controls constraints were placed on the
dynamic lateral displacements of the wing and horizontal tail, the deflection of the control
surface, and the time-to-half for the two longitudinal modes.

The iterative solution to the global sensitivity equations was implemented in
conjunction with an approach to reduce the dimensionality of the system equations.
Explicitly, this involves the reduction in the total number of subsystem output parameters
by an efficient constraint representation approach. Such an approach permits the
representation of a large number of inequality constraints by a single cumulative measure in
the form of a K.S. function.

Solutions of the global sensitivity equations were obtained for three specific cases,

with selective use of the cumulative constraint to reduce the system dimensionality.

Case 1, Constraint reduction techniques are not used. The system output vectors

for the five mode case are as follows.
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Ys =(0%6.K,V,1,,,W,g) NS =453
Y, =(L.Cy,.Cy, £x) NA =30
YC =(mc,8,gc) NC=19 (7.14)

The GSM dimensionality for this case is 502 x 502.

Case 2. Cumulative constraints are used for static stresses and for static and

dynamic displacements, resulting in output vectors with the following dimensions for the

five mode case.
NS =400
NA =30
NSC=5 (7.15)

The GSM has dimensions 435 x 435.

Case 3. Cumulative constraints are used to represent all constraints in each

subsystem resulting in output vector dimensions as follows.

NS =389
NA =25
NSC=3 (7.16)

The GSM has dimensions 417 x 417 for this case.

ign Variable All ion Comparison

The six design variables that may participate as local variables to each subsystem

(Cr,Cm,Ct,b,y,D} 1.17)
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The variables Cr, Cm, Ct correspond to the chord lengths at the root, mid-station, and tip
of the wing. The variables b and 'y correspond to the semi-span and dihedral of the wing.
The placement of the wing on the fuselage is determined by D which represents the distance
between the horizontal tail quarter-chord point and the trailing edge of the wing at the root
section.

Additional design variables traditionally allocated to the structures subsystem
correspond to stringer and membrane thicknesses in the four prescribed wing sections and

were as follows.

(ag,....ag,Thy,.... Thyg) (7.18)

Here, a; and aj correspond to the bottom and top stringer areas of section I, a3 and a4
correspond to the bottom and top stringer areas of section II, etc. Similarly, Thy , Tha,
and Thj correspond to the bottom, top, and side membrane thicknesses of section 1.

The gain components of the optimal control analysis were considered to be design
variables in this multidisciplinary synthesis problem and are traditionally placed in the flight
mechanics subsystem. The gain matrix, G, has dimensions nac x 2nmod where nac is the

number of actuators and 2nmod is twice the number of modes considered in the analysis.

(G1,....G2nmod) (7.19)

Since certain design variables affect the analyses, and hence the design constraints
for more than one subsystem, these design variables can be represented in more than one

way in the GSM. Two representations were implemented in this study.

Case 1, In this case, design variables which contribute to more than one subsystem
analysis were considered design variables in each of the subsystems. The design variable

vectors are,
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Xs =(C,b,y,D,a,Th) NXS =26
X, =(C,b,y.D) NXA=6
XS = (C, b,'Y,D,G) NXC = 8,12,16 (7.20)

where C are chord lengths at designated span stations, b is the wing semi-span, 7y is the
wing dihedral, D defines the wing location along the fuselage, a are the stringer areas, Th
are membrane thicknesses, and G is the controller gain vector which has dimensions of two
times the number of eigenmodes used in the analysis. As stated previously, one, three, and

five modes were used in the numerical work.

Case 2. In this implementation, specific design variables were allocated to only one
discipline, but were also represented as output in the Y vectors so their influence was still

retained in other subsystem analyses. The design variable vectors are designated as

follows.
X = (a, Th) NXS = 20
X, =(C,b) NXA =4
XS =('Y,D,G) NXC=4,8,12 (721)

Here, the choice of design variables was critical, as it affects the conditioning of the GSE

system matrices.

n nt Subs imization Me

Verification Procedure

The validity of the CSSO method is established by application to the structural

synthesis problem defined in the previous chapter. The design variables are permanently
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assigned to the subspaces at the outset of the design procedure in order to simplify the
initial method application. Optimization results for this structural problem are obtained by
three different synthesis procedures for comparison purposes, one of which is the CSSO
Method. An all-in-one optimization is performed for the other two cases in which the

sensitivity information is obtained by the finite difference method and by the GSE method.

The advantage of modularity is investigated by implementation of a distributed
processing scheme in order to demonstrate the versatility and potential computational
efficiency of the CSSO method. Subsystem analyses are performed in separate computing
environments concurrently in order to achieve a parallel processing capability. The

schematic implementation of this capability is shown in Figure 7.1.

\ pproximation Scheme Compazi

The application of various approximation schemes for constraint representations
including linear, reciprocal, and improved [Fad90] approximations were investigated in this
effort. A comparison of optimization convergence histories and constraint violation
histories were made to determine the most effective scheme for the class of problems

considered.

ffe valuation

The effect of the r and t coefficients on the convergence characteristics for the
optimization process was investigated. A study is made to determine whether bounding the

t coefficients yield superior convergence characteristics as well as reduced constraint
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Figure 7.1

Distributed processing flowchart in CSSO.
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violations. Since the t coefficients essentially allow for a possible violation of constraints
in one subspace as long as an oversatisfaction of that constraint is obtained in the other,
bounding the t coefficients has the effect of limiting the violation that can potentially occur.
The effect of forcing the r coefficients to be active for the last few optimization cycles is
also investigated. This application forces each subspace optimization to satisfy all

constraints rather than allowing for a trade-off to occur between subspaces.

Variable Move Limit S

Designers generally adopt a move limit strategy which involves initially assigning
all design variables the same move limit value. As the design process progresses and the
optimum is approached, the initiai move limit value is continually reduced as the
approximations become more critical for convergence. However, it may not be reasonable
to group all design variables together in assigning move limit values. If certain design
variables can be identified as having the most impact on a design and therefore requiring
more restrictive move limits, it would be possible to allow the less critical design variables
more leeway in their associated move limits. This would result in potentially reducing the
overall cycles required for convergence, thus increasing computational efficiency. In this
application, implementation of a variable move limit strategy is made to achieve such an
efficient convergence scheme.

The effectiveness of each design variable is quantified by means of the previously
defined effectiveness coefficients with the difference that the K.S. function cited in this
case is a composite K.S. function representative of the most critical cumulative constraints
from each subspace. The resulting effectiveness coefficients define an effectiveness space,
in which upper and lower bounds must be determined as follows.

The mean value of the effectiveness space can be determined from
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Mz

€

1 (7.22)

-1
€E=—
N

where N is the total number of design variables. The associated standard deviation is
determined from the relation,
1 N L
o(e) = [N—T ‘Z(Ca-e) ]
—li=l (7.23)
The upper and lower bounds of the effectiveness space can now be defined in terms of the

mean value and standard deviation as

e =€-0(e) (1.24)

Once the effectiveness space bounds are defined, associated move limits can be assigned to
each design variable. For instance, the upper and lower effectiveness bounds might
correspond to areas beyond which 90% and 10% move limits are permitted, respectively.
Design variables with effectiveness coefficients falling within the upper and lower bounds
would be assigned move limits based on a linear distribution between the bounds.

A description of a verification procedure to demonstrate the feasibility Qf the
variable move limit strategy is presented in Appendix A. Examples and a discussion of

results obtained for various applications are discussed.

n n imization - X h
Distributed Processing Environment

A parallel computing environment is utilized in which the structural analysis is

performed on a CONVEX computer while the flight mechanics analysis is carried out on a
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VAX/VMS system. The coordinating node which is responsible for delegating tasks

between these environments is also a VAX/VMS system.

Design Variable Alloca

Due to the interactions which exist in a highly coupled problem, such as in
multidisciplinary applications, it is reasonable to assume that certain design variables may
contribute to more than one subsystem analysis. Although these design variables can be
allocated to subsystems based solely on sensitivity information, heuristics pertaining to
traditional allocations are useful in situations for which no dominant choice surfaces.

In the CSSO-EES method, the design variable allocation proceeds as follows.
Based on the sensitivity analysis, the impact of each design variable on a particular subsys-
tem's outputs is quantified using effectiveness coefficients, ¢j . Based on the values of
these effectiveness coefficients, the relative importance of each design variable with respect
to each subsystem's analysis is established by a rank-ordering procedure. Design variables
which demonstrate a relatively similar influence on more than one subsystem are subjected
to evaluation by the embedded expert system capability to determine their subsequent
allocation.

The facts which must be asserted into the fact-list include the total number of design
variables, the number of design variables already allocated to the various subsystems, and
the type of design variable that is being considered for allocation. For example, in the
structures/controls problem, the design variables are either sizing or damping variables. If
the variable under question is a sizing variable, the fact would be entered into the fact-list

with the command

(assert (dv sizing))
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The rules in the knowledge base follow the logic that if the number of design variables
already allocated to a particular subsystem is large, then the questionable design variable
should be allocated to the non-traditional subsystem. For instance, if the number of design
variables already allocated to the structures subsystem exceeds 60% of the total number of
design variables, then even though the variable to be allocated is a sizing variable, it will be
allocated to the controls subsystem in order to more evenly distribute the variables before
performing the subspace optimizations. Figure 7.2 demonstrates the logic tree for the

design variable (sizing variables) allocation knowledge base.

Optimization P Determinati

The program CONMIN [Van73], a constrained minimization code based on the
usable-feasible search direction algorithm, is used to perform the subspace optimizations.
Certain parameters associated with the algorithm must be prescribed by the designer prior
to implementation. The expertise required to assign meaningful values to these parameters
is often a limiting factor in the method's use. The implementation of an expert systems
capability that monitors the progress of the algorithm and dynamically adjusts the
parameters under question permits use of the algorithm by general designers. The
parameters that are used in this implementation are ‘itmax’, 'delfun’, ‘dabfun’, 'itrm’,
'phi’, 'theta’, and ‘ct'.

The 'itmax’ parameter corresponds to the maximum number of iterations in the
piecewise linear optimization process. Delfun’ is the minimum relative change in the
objective to indicate convergence, whereas, 'dabfun’ is the absolute change in the objective
function. The 'irm' parameter controls the number of consecutive iterations required for

convergence. 'Phi' is a participation coefficient that is used for infeasible designs and

corresponds to how hard a design will be 'pushed’ towards the feasible region. "Theta’ is
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allocate_dv

structures

Figure 7.2 Logic tree for design variable allocation.
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essentially the mean value of the push-off factor. 'Ct' is a constraint thickness parameter
used to define whether constraints are active or inactive.

The embedded expert system capability in the subspace optimizations addresses the
situation in which the optimization termination is governed by the fact that the number of
iterations has reached the maximum number prescribed by the user (litmax"), rather than
that convergence is achieved. If itmax is reached and the solution corresponding to the
final iteration is feasible, then the value of ‘itmax’ is doubled, unless this new value
exceeds an upper bound, in which case the convergence criteria is investigated. If the
parameters 'delfun’ and 'dabfun’ are both less than prescribed upper bounds, then these
values are increased. If either of these bounds are exceeded, the parameter itrm' is
reduced as long as it has not reached a lower bound. If this parameter has reached the
prescribed lower bound, the fact 'process stop' is asserted into the fact-list. A failure to
achieve a converged solution when the design is feasible after adjusting the above
convergence parameters suggests a formulation or input problem.

If, on the other hand, the number of iterations is equal to 'itmax’, but the solution
corresponding to the final iteration is infeasible, then those parameters associated with the
constraints are investigated. If 'phi' has not yet been increased in previous applications,
then its value is tripled, thereby "pushing" the design towards the feasible region three
times harder. If the value of 'phi' is greater then the initial value, but both 'phi' and the
value of 'itmax’ are less than prescribed upper bounds, then these parameters are increased
in value. If 'phi’ or ‘itmax' exceed their upper limits, however, then the 'theta’ and 'ct’
parameters are modified based on the assumption that the infeasibility and nonconvergence
problem is associated with highly nonlinear constraints. If both parameters are less than
upper bounds, new values of these parameters are calculated. Otherwise, the fact 'process
stop' is asserted into the fact-list, as a continued failure to achieve a converged, feasible

solution once again suggests a user-associated problem, rather than one resulting from
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algorithmic performance. Figure 7.3 shows the logic sequence for this heuristic

implementation.
Variable Move Limit S

The strategy proceeds as described in the previous section with the exception that
heuristics are applied to refine upper move limit bouhd that is originally prescribed by the
user. The facts which must be asserted into the fact-iist include constraint satisfaction
status from previous cycles, feasibility status of the converged solutions within the
subspace optimizations, and bound adjustment information from previous cycles. The
rules use these facts to determine whether adjustments to the prescribed move limit bounds
are warranted. If constraints were violated after the update following the subspace
optimizations (in previous cycles) in which converged feasible solutions were found, then
bounds will be tightened. If the upper bound had already been adjusted on the side of
conservativism in previous cycles, it must be adjusted even more strictly for the present
cycle. If, on the other hand, constraints were consecutively satisfied following an update,
the upper bound can be adjusted for leniency. Once the. bounds are established, move
limits for the design variables whose effectiveness coefficients fall within the effectiveness

space are determined based on a linear distribution, from the equation

(e‘el) ] 1
ml% = (mlu—ml )+ ml

20(e) (7.25)

where mI¥ and mil are the upper and lower move limit values originally prescribed by the
user with the upper bound modified by the embedded expert system as the design
progresses (i.e. 90% and 10%). Figure 7.4 shows the decision tree for the move limit

strategy rules.
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iter=itmax

/\

solution=feasible

itmax>=itmaxu itmax<itmaxu

itmax=2*itmax

delfun<delfunu delfun>=delfunu
AND OR
dabfun<dabfunu dabfun>=dabfunu

delfun=delfun+delf
AND itrm<=newitrm itrm>newitrm

dabfun=newdabfun

process=stop itrm=newitrm

Figure 7.3 Logic tree for optimization parameter determination.
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Figure 74  Logic tree for heuristic-based variable move limit strate gy.
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ion ffici ign

Coordination variable assignment based on heuristics as opposed to a COP
alleviates problems associated with obtaining problem parameter sensitivities, such as
premature convergence to suboptimal designs or active constraint switching. The
knowledge base contains rules to determine whether a trade-off will be permitted in the
present cycle, based on constraint satisfaction histories from the present and previous
cycles. If no trade-off is permitted, the r coefficients are determined so as to assign a
greater responsibility for a cumulative constraint satisfaction to those SSOs that have a
relatively greater influence on that constraint. Values for these coefficients are algebraically
determined from a scaling process involving manipulation of sensitivity information
obtained from the GSE. If a trade-off is permitted, then the subspace in which the violation
is to be permitted is determined based upon each subspaces ability to reduce the system
objective function. The subspace with the ability to reduce the objective function by the
greatest amount is permitted either a 20% or 10% constraint violation depending on
whether the constraint value of the present cycle is more satisfied than the previous cycle or
not.

The facts which must be asserted into the fact-list include information pertaining to
traditional constraint allocations and the numbers of design variables allocated to the
various subspaces. The rules use these facts to determine whether modifications to the
basis should be implemented. A major consideration involves the traditional allocations of
constraints. For instance, if the constraint under question limits the allowable stresses in
the truss members, it would normally be associated with the structures discipline. The
responsibility for satisfying it would traditionally rest with the sizing variables within that
discipline. However, if the number of variables allocated to the traditional subspace is for

some reason unusually small, difficulties would possibly arise with satisfying the
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constraint within that subspace. Therefore, the responsibility for satisfying that constraint

is shifted to the non-traditional subspaces.
Figure 7.5 demonstrates the logic for determining switch parameters and trade-off

coefficient values for subspace 1. Appendix B contains the rules for the four heuristic

implementations.
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cycle

/\

cycle = 0 cycle > 0

S1=0 S2=0 Ci<-ct & Ci_old<-ct Ci>=-ct Ci<-ct & Ci_old>-ct

Si=0
Si=1 Si=1
dW/dX1 > dW/dX2 dW/dX2 > dW/dX1
Ci> Ci_old Ci<Ci_old Ci>Ci_old Ci <Ci_old
Ti1=-1 T11=-2 T11 =1 Ti1= .2
Ti2= .1 Ti12= .2 Ti2=-1 T12=-.2

Figure 7.5  Logic tree for heuristic coordination coefficient determination.

L
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CHAPTER 8
DISCUSSION OF RESULTS

Results obtained by implementation of the solution and verification techniques

described in Chapter 7 are discussed for each decomposition method.

nsitivi i h

The effect of constraint representation, design variable allocation, and normalization
of the GSM on condition number can be seen in Figures 8.1a and 8.1b. As expected, the
condition number increased with increased dimensionality of the GSM and was
unacceptably large when normalization was not used. The allocation of design variables to
distinct disciplines and their inclusion in the output vector had little influence on the
condition number. As can be seen in these figures, implementation of the normalization
scheme described previously effectively reduced condition number, thus contributing to
improved solution accuracy.

The effect of normalization of the GSM, constraint representation, dimensionality,
and design variable allocation on computational requirements is summarized in Figures
8.2a-8.2c. Although Figures 8.2a and 8.2b demonstrate little change in solution time for
direct decomposition with normalization, Figure 8.2c shows significant reductions when
used with Gauss-Siedel iteration. For the limited dimensionality problems considered in
this work, these solution times were comparable to those required in a direct decomposition
approach. Due to roundoff error accumulation in a direct decomposition approach, the
iterative strategy is preferred. In the iterative framework of the design synthesis process, it

is possible to use the solution of the previous iteration as the initial choice for the current
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iteration. Mixed results were obtained upon application of such a strategy, failing to
conclusively establish any distinct advantage in computational savings.

Results for the output response sensitivities were obtained by direct decomposition
and iterative solution approaches, as well as by a finite difference technique using the
coupled system equations. A comparison of these results in terms of the standard deviation
measure previously defined for various constraint and design variable cases are
summarized in Figures 8.3a-8.3e. Extremely good agreement between iterative and direct
decomposition solutions is shown with slightly improved agreement with the use of
normalization implementation. A comparison between direct decomposition and finite
difference solutions shows good agreement with increased deviations resulting from the
somewhat loose convergence criteria used in the solution of the coupled analysis equations
in the finite difference approach. Direct decomposition solutions for the two design
variable representation cases (Figure 8.3e) demonstrated reasonably good agreement
between the two representations, but did not conclusively establish the advantages of one
type of design variable representation over the other.

The sensitivity information obtained in the above analysis was also used in a
representative optimization application. Table 8.1 summarizes the initial and final designs
for this exercise. Results obtained for the 1 mode, finite difference solution and the 3
mode, GSE solution are presented. The number of design variables for the 1 mode
solution are less than the 3 mode solution due to the fewer gain components associated with
the former set. The results, obtained at the end of the sixth iteration, demonstrated similar

values for the design objective.

Cn S! Q.. » I!!i

Since the CSSO is a newly proposed method, it is critical that optimization

solutions obtained by application of this approach are compared to more established method
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Table 8.1 Summary of optimization results for GSE application to the aircraft
synthesis problem.

INITIAL FINAL
DV 1 mode. FD solution 3 mode, GSE solution
1 64.00 77.1300 71.5629
2 64.00 73.9076 68.3836
3 44.50 45.5795 62.9380
4 217.0 166.129 133.937
5 1.500 0.57240 1.75480
6 123.5 108.545 108.175
7 0.400 0.23034 0.27464
8 0.400 0.17364 0.27381
9 0.300 0.15936 0.20981
10 0.300 0.14051 0.21033
11 0.200 0.15875 0.15450
12 0.200 0.11927 0.15462
13 0.200 0.15737 0.18509
14 0.200 0.15603 0.18503
15 0.050 0.02458 0.03286
16 0.050 0.02790 0.03262
17 0.050 0.03227 0.03745
18 0.050 0.01741 0.03198
19 0.050 0.01758 0.03205
20 0.050 0.02417 0.05509
21 0.040 0.01966 0.02981
22 0.040 0.02334 0.02988
23 0.030 0.03260 0.03104
24 0.030 0.02212 0.02902
25 0.020 0.02447 0.02900
26 0.020 0.02881 0.02513
27 0.100 0.11445 0.10003
28 0.100 0.11949 0.09965
29  0.100 , 0.10000
30 0.100 0.10132
31 0.100 0.07999
32 0.100 0.09999

OBJ  2033.37 Ibs 1909.43 Ibs 1888.58 lbs
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solutions for verification purposes. To this end, various optimization solutions to the ten-
bar truss problem described previously are presented in Table 8.2. The four sets of results
presented correspond to optimization solutions where sensitivities were obtained by a finite
difference procedure and by the GSE method (Cases 1 and 2, respectively), and by
application of the CSSO method in both the traditional single processor and in a distributed
processing environment (Cases 3 and 4, respectively). The CSSO solutions correspond to
cases in'which reciprocal approximations were used in ‘conjunction with a variable move
limit scheme. As can be seen from Table 8.2, all three methods (Cases 1-3) show good
agreement, thus confirming the feasibility of the proposed CSSO method. Further, the
ability to effectively parallelize the CSSO implementation was demonstrated by comparison
of solutions corresponding to Case 4 with those obtained in Cases 1-3. Essentially the
same design was found in all cases, with the distributed results demonstrating the
versatility and potential computational efficiency of the CSSO method.

Figures 8.4a and 8.4b demonstrate that a reciprocal constraint approximation
scheme results in largely improved constraint violation characteristics compared to a linear
approximation scheme. The more accurate constraint approximations resulting from
application of the reciprocal scheme allowed for larger move limits in the piecewise-linear
approach at the subspace optimization level. Very little difference was obtained by
implementation of the improved approximation scheme.

The outcome of a study to determine the effects of bounding the t coefficients is
seen in Figures 8.5a and 8.5b, in which no upper bound and an upper bound of 1.0 was
enforced, respectively. Twenty percent move limits were permitted and a reciprocal
approximation scheme was used in both cases. It is obvious that the increase in the t
coefficient value in the first case contributed to a continually worsening oscillatory
convergence history. Applying an upper bound on the t coefficients resulted in a speedier
convergence, as little time was spent compensating for constraint approximation

inaccuracies occuring in prior cycles. Figure 8.5b also demonstrates the result of forcing
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Table 8.2 Comoparison of initial and final optimization results for ten-bar truss model.

INITIAL , FINAL
CASE1 CASE2 CASE3 CASE4
Weight (1)  5601.3 2116.0 2115.6 2120.6 2113.1
DV (in?)
1 10.0 7.14 7.14 6.87 7.09
2 10.0 5.03 4.96 4.88 4.84
3 10.0 6.71 6.66 6.63 6.63
4 10.0 0.10 0.10 0.39 0.17
5 10.0 4.31 4.31 4.34 4.25
6 10.0 3.71 3.72 4.15 4.02
7 10.0 0.10 0.10 0.12 0.10
8 10.0 8.24 8.23 8.01 8.01
9 10.0 0.10 0.10 0.42 0.24
10 10.0 0.11 0.10 0.10 0.10

300.0 371.2 373.7 351.0 366.2

[
Pk
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the 1 coefficients to be active in the final cycles of the design process. The trade-off
capability of the t coefficients was 'turned off, resulting in a smooth convergence. Figure
8.6 shows the forced constraint satisfaction achieved by such an implementation.
Implementation of a variable move limit strategy based on the concept of
effectiveness coefficients demonstrated substantially improved convergence characteristics.
A comparison of the convergence history shown in Figure 8.5b with that resulting from an
implementation of the heuristics-based variable move limit strategy in Figure 8.7, shows a
marked improvement in objective function reduction after the first cycle. An overall
reduction of twenty cycles was achieved by applying the move limit strategy, which

translates into significant computational savings.

Table 8.3 demonstrates results corresponding to four approaches for the
control/structure interaction problem described in Chapter 6. Cases A and B correspond to
'all-in-one' optimization strategies in which the gradient information was obtained by the
Finite Difference (FD) and Global Sensitivity Equation (GSE) approaches, respectively.
Case C corresponds to the Concurrent Subspace Optimization method and Case D to the
CSSO with the embedded expert system capabilities discussed in the previous section.
Although final results are quite similar, there are definite differences between the results
corresponding to the FD, GSE, and CSSO approaches. This difference can be largely
attributed to the fact that the CSSO method makes extensive use of cumulative constraint
representations. These functions have the effect of creating a constraint envelope which is
slightly conservative, thus resulfing in convergence to a slightly different final design. As
can be seen from Table 8.3, only a 4% difference in the objective function exists between

the CSSO and GSE method results.
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Table 8.3 Comparison of optimization results for CSI problem.
INITIAL FINAL
FD GSE___ CSSQ CSSO-EES
Weight Ib) 848 410 427 - 47 451
DV (in?)
1 2.0 1.8 2.0 2.0 2.2
2 2.0 91 1.0 .63 .95
3 2.0 2.0 2.1 2.2 2.3
4 2.0 .36 .39 .60 .78
5 2.0 .70 .82 1.3 76
6 2.0 1.3 1.1 .83 1.1
7 2.0 22 20 47 30
8 2.0 1.4 1.3 .95 1.1
9 2.0 .54 .65 1.2 .59
10 2.0 .25 .38 44 .56
11 .05 .06 .04 .02 .01

Cycle 12 15 29 25
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The effect of reallocating the design variables after every five cycles was
investigated for cases in which a strictly algorithmic allocation scheme (Case A) and the
heuristics-based allocation scheme previously described (Case B) were used. Table 8.4
demonstrates the allocation of selected design variables (numbers 1, 5, 7, and 8) after 5,
10, and 15 cycles. The design variables were allocated to either subspace 1 (structures) or
subspace 2 (controls). It is interesting to note that the weight after five cycles was 476 Ib.
for Case A and 460 Ib. for Case B. Clearly, use of the heuristics-based design variable
allocation scheme provided better convergence rates.

The embedded expert system capability was used effectively to determine values for
parameters associated with the optimization code CONMIN. The capability both initialized
parameters associated with linearity of the problem, as well as dynamically changed
parameters for cases in which convergence was not achieved for the approximate
optimization problem. The initialization process resulted in slightly increased values for
'phi’, 'theta’, and ‘ct’ since constraint non-linearities existed.

The incorporation of an efficient move limit strategy in which the upper bounds
were heuristically varied resulted in a more efficient convergence scheme. As seen in Table
8.3, the CSSO method required 29 cycles to converge, whereas the CSSO-EES required
25. Figure 8.8 demonstrates the variation of the upper bound in the first 10 cycles, as well
as the move limits associated with two representative design variables (number 4 and 6).
As shown in the figure, the upper bound decreases as the design process progresses, with
correspondingly smaller move limits for all design variables. The figure also demonstrates
the versatility permitted by this scheme. Design variable 4 is initially permitted move limits
of up to +/- 60%. As the variable became more important in reducing the objective function
and satisfying the constraints, move limits were reduced to +/- 5%. The heuristics-based
move limit strategy thus effectively replaced the involvement of the designer in making

move limit choices.
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Table 8.4 Comparison of design variable allocations without (Case A) and with (Case
B) heuristics.

REALLOCATION COMPARISON

CYCLE DVl DYS DV7 7 DV8
Initial

A 1 2 2 1

B 1 1 2 1
After 5

A 1 1 1 1

B 1 1 2 1
After 10

A 2 2 2 1

B 1 1 2 1
After 15

A 1 1 2 1

B 1 1 1 2
WEIGHT AFTER 5 CYCLES

A 476 1b. Without Heuristics

B 460 1b. With Heuristics
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The replacement of the coordination optimization problem with a heuristics-based
coefficient assignment scheme was implemented. Table 8.5 shows the r and t coefficients
corresponding to cumulative constraint 1 (C1) for the first ten cycles of the optimization
process. At the initial cycle, no trade-off was permitted and the r coefficients were
activated. At the first cycle, however, the constraints were sufficiently over-satisfied to
permit a trade-off to occur. The trade-off continues until the 6th cycle, where the constraint
exceeded the prescribed allowable limit and was determined to be active. The r coefficients

were then active until such time as the constraint was satisfied for two consecutive cycles.
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Table 8.5 Coefficient and constraint values for first ten optimization cycles.
Cycle ACTIVE COEFFICIENTS

Cl Ril RI2 Ti1 _TI12

0 -.20 58 .42 - -

1 -.13 - - -.1 1

2 -.06 - - -.1 1

3 -.02 - - -.1 1

4 -.01 - - -.1 1

5 -.006 - - -1 1

6 .009 g2 .28 - -

7 .007 a1 .29 - -

8 .003 a1 .29 - -

9 .004 a1.29 - -

10 .0009 .09 91 - -
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CHAPTER 9
CONCLUDING REMARKS

The recent thrust to improve quality of products as well as productivity in the
United States has led to the realization that traditional design practices are inefficient and
outmoded. It is in the design phase that the most potential exists to take advantage of the
synergism of the inherently coupled disciplines to increase the overall quality of the product
as well as to reduce the time and effort required for development and design of the product.
The multidisciplinary interactions existing in large scale engineering design problems
provide a unique set of difficulties associated with unwieldy numbers of design variables
and constraints. Such obstacles require design techniques which take advantage of the
extensive couplings of the disciplines in the analyses and optimizations, producing an
efficient methodology to perform multidisciplinary synthesis.

The goal of the present effort was to develop a design capability appropriate for
large engineering systems in which a distinct system hierarchy is difficult to identify. The
concept of decoupling large complex problems into smaller, more tractable subsystems was
investigated using system decomposition techniques. Three approaches to system
decomposition were investigated for this purpose: the Global Sensitivity Equation (GSE)
Method, the Concurrent Subspace Optimization (CSSQO) Method, and the Concurrent
Subspace Optimization - Embedded Expert System (CSSO-EES) Method. All three
methods permit the concurrent consideration of the design criteria within all disciplines,
thus providing an environment particularly amenable to parallel processing.

The GSE Method provides a means for decomposing the system into smaller
subsystems that can be analyzed independently. Sensitivity information obtained by this

approach is then used in an ‘all-in-one' optimization, performed within the framework of a
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sequential linearization strategy. The applicability of the GSE method in the
multidisciplinary synthesis of aeronautical vehicles was investigated. A hypothetical
aircraft in the class of the Cessna 170-type configuration was chosen as the test
environment for the investigation, with the disciplines of structures, aerodynamics, and
flight mechanics contributing to the objective function and constraints for the problem.
Potential drawbacks in the use of the GSE approach were identified as arising from a large
number of design variables and constraints and from an improper choice of design
variables. Approximation methods were applied in order to reduce problem dimensionality
and to improve the efficiency of the optimization process. The influence of constraint
representations and the choice of design variables was shown to be a primary concern.
Further, it was demonstrated that normalization of the system matrix is essential to avoid
problems associated with ill-conditioning. Numerical results demonstrated the applicability
of the GSE approach for large, coupled design synthesis problems.

The CSSO Method is basically an extension of the concept upon which the GSE is
based. Not only are the analysés performed in separate subsystems, as in the GSE, but the
optimizations are decoupled as well, and executed within separate subspaces concurrently.
Unlike the conventional method of subspace optimizations, however, the CSSO eliminates
the need for a full analysis in each subspace. Coordination amongst subspaces is achieved
through the use of coordination coefficients which determine the responsibilities assigned
to each subspace for satisfying a given constraint. Each cycle of the approach results in
either a reduction of the system constraint violation or an improvement of the system
objective function if the constraints are already satisfied. The temporarily decoupled
optimization and analysis problems are eminently appropriate for a design organization
setting in which groups of specialists are associated with disciplines and physical
subsystems. Potential drawbacks were identified pertaining to the linearizations required
throughout the CSSO. The synthesis problem investigated for method verification

involved the optimal design of a ten-bar truss for minimum weight subject to stress and
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displacement constraints. Subspaces were defined in terms of sizing and space variables.
Results demonstrated the necessity for limiting movement of the coordination variables to
achieve a smooth convergence. Further, the importance of imposing an appropriate
approximation scheme was demonstrated. The applicability of a variable move limit
strategy was shown to be of extreme computational worth. A verification study of the
move limit strategy demonstrated the computational savings that can be obtained in the
optimization process by permitting design variables to ‘move’ according to their impact on
the design. Results of the CSSO verification study demonstrated that the approach was a
versatile method which potentially offers exceptional data management advantages. The
method allows for the use of specialized methods for analysis and optimization due to its
modularity and is particularly suitable for the incorporation of human intervention and
decision-making.

The heuristic variant of the CSSO, the CSSO-EES, takes advantage of problem-
dependent heuristics and user expertise in the form of an embedded expert system
capability to achieve improved convergence characteristics and greater versatility. The
method makes use of heuristics in allocating the design variables to the most appropriate
subspace, ensuring convergence within each approximate optimization problem, improving
on the variable move limit strategy, and replacing the optimum sensitivity analysis and
coordination optimization problem with the embedded expert system capability. The
synthesis problem chosen for the demonstration involved the optimal design of a
controls/structure interaction model for minimum weight based on active control and
structural integrity requirements. Results demonstrated that improved efficiency as well as
versatility can be obtained with the incorporation of an expert system capability.

Although the methods investigated proved applicable for the optimal design of large
engineering systems, substantial room for improvement exists. The concept of
multidisciplinary design optimization has gained prominent recognition in the engineering

community in the last ten years. The importance of developing methodologies appropriate
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for non-hierarchic environments has been emphasized as a key function of future design
techniques. Such techniques require a necessary organizational as well as technical
modification in order to achieve their full potential. The design process itself has
undergone a major change, as the concept of incorporating all the design criteria in a
simultaneous treatment has emerged as not only desirable, but necessary. Recent initiatives
have focused on consideration of manufacturability and supportability as well as
performance objectives in a 'Concurrent Engineering' (CE) approach. An investigation of
the applicability of the CSSO and CSSO-EES in a CE problem is an obvious next step, as
both methods allow for the use of specialized methods for analysis and optimization.
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APPENDIX A
MOVE LIMIT STRATEGY VERIFICATION

Variable Move Limit S

The move limit strategy defined in Chapter 7 is used to determine the move limits
associated with each design variable as a result of their impact on the design. Side

constraints are formulated for each design variable in terms of the move limits as,

A0-mh) v <x 100+m) o
100 T 100 (A1)

This formulation defines upper and lower bounds associated with a prescribed percentage

of movement about the design variables.
Method Implementation

The feasibility of the variable move limit strategy was investigated by means of a
verification procedure. The method was applied in truss design problems with varying
degrees of complexity and size. The design objectives and application models used in the

verification procedure are described in the following sections.

Desien Obiecti

The objective of the design problem for all cases was to minimize the weight of the
structure while maintaining limitations on member stresses and nodal displacements. The

design variables were the cross-sectional member areas. The structural analysis was
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performed using the finite element code EAL. The constrained minimization code,

CONMIN, based on the method of usable-feasible directions, was used as the optimizer.
A polication Model

Three test cases were investigated to demonstrate the feasibility of the move limit
strategy in design optimization. Case 1 involved fhe optimal design of a ten-bar truss
subject to static loading, as shown in Figure Al. Two initial designs were considered (1a
and 1b), corresponding to initially infeasible and initially feasible points. Case 2 extended
the implementation to a twenty-five-bar truss with the loadings shown in Figure A2. The
final case involved the design of a two hundred-bar truss (Figure A3) with a 1000 1b.
loading applied in the positive x direction at nodes 1,6,15,...,71. The allowable stress and

displacement values for each case, as well as material property information are shown in

Table Al.
Table Al Material properties and allowable limits for move limit strategy verification
applications.
Case E(psi) p(Ibs/in3) Gal(psi) dal(in)
1 10E6 0.100 +/- 25E3 +/- 2.0
2 10E6 0.100 +/- 25E3 +/- 2.0
3 30E6 0.283 +/- 10E3 +/- 0.5

Discussion of Results

Implementation of the variable move limit strategy in three test cases demonstrated
significantly improved convergence characteristics. A discussion of results obtained for

each test case is presented.
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Figure A1 Case 1 model - 10 bar truss.
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Figure A2 Case 2 model - 25 bar truss.

25




Figure A3 Case 3 model - 200 bar truss.
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Case 1. Ten bar Truss

Two applications were investigated in this case, corresponding to initially infeasible (Case
1a) and initially feasible (Case 1b) design points. Figure A4 demonstrates the distribution
~of effectiveness coefficient values for Case 1a, in which the mean value of the effectiveness
space and the lower and upper bounds are also shown. The convergence histories for the
objective function and for a representative design variable are shown in Figures A5 and A6.
Design variable 4 (DV 4) corresponds to the cross-sectional area of truss member 4 (Figure
3) and has a minimum gage value at the optimum. Figure A5 demonstrates the
unacceptably large number of cycles required for DV 4 to approach the gage value, due to
restrictive move limitations. The implementation of the move limit strategy permits the
achievement of this value in only 8 cycles as opposed to the 32 cycles required without.
Figure A7 demonstrates the move limit history for selected design variables over the ten
cycles required for convergence, It can be seen from this figure that DV 4 consistently has
move limits of 40% or greater t,hroughout the optimization process, thus permitting a rapid
convergence to the gage value.

A comparison of convergence histories for objective function and DV 4 is shown in
Figure A8 for Case 1b. The first four cycles of the optimization process are shown to
demonstrate the substantial improvement that is obtained in the first cycles by
implementation of the move limit strategy. The objective function value was reduced by
more than 36% with the addition of the move limit strategy as opposed to only 30% when it
was not used. The change in DV 4 was most dramatic, however, with a 95% reduction in

value as opposed to a 76% reduction.
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Effectiveness Coefficients (1E-05)
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Figure A4 Effectiveness space for Case 1a initial point.
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Case 1a convergence histories with no move limit strategy.
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Weight (Thousands) : DV 4 (sq in)
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Figure A6 Case 1a convergence histories with move limit strategy.
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Figure A7 Move limit histories for Case 1a.
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Figure A8 Comparison of Case 1b convergence histories with and without move limit
strategy.
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Case 2: Twenty-five bar Truss

The convergence histories for the objective function and for design variable 10 for Case 2
are shown in Figures A9 and A10. As with DV 4 in the ten-bar truss problem, DV 10 has
a minimum gage value at the optimum. As with Case 1, an unacceptably large number of
cycles are again required for DV 10 to approach the gage value, due to the restrictive move
limitations applied in the design process when no efficient move limit strategy exists
(Figure A9). The implementation of the move limit strategy allows DV 10 to reach gage
value in only 12 cycles as opposed to more than 40 cycles required with no move limit
strategy.

Figures A9 and A10 demonstrate that a 59% difference exists in the computational
requirements for the two cases, with the move limit strategy case requiring only 17 cycles
for convergence and the other requiring more than 42. As with Case 1, it was
demonstrated that implementation of the move limit strategy results in greatly improved

convergence characteristics, which translates into computational savings.

Application of the move limit strategy in the minimization of weight for the two hundred
bar truss example was made for one cycle to demonstrate the savin gs that can potentially be
obtained in such a large problem. The objective function values for the initial and first

cycle are shown in Table A2.

Table A2 Initial and first cycle results for two-hundred bar truss.
Cycle Weight (Ib)
no ml strategy with m] strategy
0 149451 149451

1 119585 80107
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Figure A9 Case 2 convergence histories with no move limit strategy.



134

Weightl (lb) 7 - DV 10 (in sq)

29500

27500

25500

23500

21500

18500

17500

—Weight —+pvi0

35

30

25

20

15

10

15500

Figure A10

Cycle Number

Case 2 convergence histories with move limit strategy.
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A 46% improvement is made in objective function value with the move limit strategy as

opposed to only a 20% improvement without, with no constraint violations in either case.

oncluding Remarks for Move Limit Straegy Verifiat

The applications of a variable move limit strategy in the optimal design process
were demonstrated. The strategy is based on effectiveness coefficients which quantify a
design variable's impact on the design criteria. Results for three test cases of varying size
and complexity demonstrate substantial reductions in computational effort, which translates
into increased efficiency. It has been shown that the ability exists to take the guesswork

out of move limit value assignment.
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APPENDIX B

KNOWLEDGE BASE FOR CONCURRENT SUBSPACE OPTIMIZATION -
EMBEDDED EXPERT SYSTEM METHOD

Design Variable Alocat

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DVRL.CLP

b4
I
.
?
14
’

: ALLOCATION RULE

;(defrule allocation
(ndv_structures_allocated
(ndv_controls_allocated
(ndv_total

(bind 7Indv_allocate (+
Gf (< ndv_allocate
then (assert (allocation

DESIGN VARIABLE ALLOCATION RULE SET
;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Determines total design variables allocated. If number design variables allocated
is less than total number design variables, then allocation is unclear.

ndvsall)
ndvcall)
ndvtot)

ndvsall
ndvtot)
unclear))))

"ndvcall))

;, CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
STRUCTURES_NDV_SIZE RULE

; Determines whether number design variables allocated to structures is large

or not large.

(defrule structures_ndv_size
(allocation unclear)
(ndv_structures_allocated Indvsall)
(ndv_total Indvtot)

=> .
(bind 7newtotal (* .6 ndvtot))
(f (< ndvsall newtotal)
then (assert (ndv_structures not_large))
else  (assert (ndv_structures large))))
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;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CONTROLS_NDV_SIZE RULE

Determines whether number design variables allocated to controls is large

.
14
.
?
.
b4
.
’
.
v

or not large.

(defrule controls_ndv_size
(allocation unclear)
(ndv_controls_allocated Indvcall)
(ndv_total Mndvtot)

=>
(bind ?newtotal (* .6 ndvtot))
Gf (< Mndvcall Inewtotal)
then (assert (ndv_controls not_large))
else (assert (ndv_controls large))))

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
ALLOCATE_SIZING RULE

variable to either structures or controls based on numbers of

Allocates sizing
allocated as well as traditional considerations.

; design variables already
’(dcfrule allocate_sizing
(allocation

(dv
(ndv_structures

af

unclear)
sizing)
ndvs)

Indvs large)

7alldv controls)

7alldv structures))
ALLOCATE %alldv O

(eq
then (bind

else (bind

(KBANS1 0)

,CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
ALLOCATE_DAMPING RULE

Allocates damping variable to either structures or controls based on numbers of
design variables already allocated as well as traditional considerations.

»
.
?
.
?
.
’
.
3
.
?

defrule allocate_damping
(allocation unclear)
(dv damping)
(ndv_controls Indvc)
=>
af (eq  ndvc large)
then (bind ?alldv structures)
else (bind ?alldv controls))

(KBANS1

ALLOCATE 7?alldv 0 0)
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Variable Move Limit §

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

ML.CLP

v

M4 we W wae

RULE SET FOR VARIABLE MOVE LIMIT DETERMINATION

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCer

?
L3
’
a
3
.
4
?

CONSTRAINT RULE

Determines whether constraint is active, not-active, or violated.

defrule constraint_satisfaction

(constraint 2
(constraint_thickness ?ct)
=>

(bind ?ctneg (- 0.0 7))

Gf (< % Ictneg)

then  (assert (satisfaction not_active))

else (if (< g 2ct)
then (assert (satisfaction active))
else  (assert (satisfaction violated)))))

.
14

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

?
.
44
.
k4
.
’
3

(defrule initial
(cycle
(upper_bound

=>
(f (= Tcyc
then (KBANSI

.
k4

INITIALIZE RULE

If first cycle, set upper bound for move limits.

Tcyc)
7ub)

0)

UPPER ?ub

0)))

null

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

ACTIVE RULE

on whether constraint is positive or negative.

; If cycle greater than zero and constraint is active, determine upper bound based

(defrule active_constraint
(satisfaction
(cycle
(constraint
(upper_bound

Tactive)
2cyc)
g)
7ub)
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Gf (b yc 0)

then (f (< ? 0.0)
then (bind newub 2ub)
else (bind 7newub (* 0.9 b))
(KBANS1  UPPER null  ?newub 0))

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
NOT_ACTIVE RULE

If cycle greater than zero and constraint not active then determine upper bound
based on how close to allowable upper limit previous cycle was.

b4
.
L
.
b4
.
k4
.
]

(defrule not_active_constraint

(satisfaction not_active)

(cycle Tcyc)

(upper_bound Tub)

(upper_max Tubm)

=>

(if > yc 0)

then (bind ?ubmax (* 0.83333 7ubm))
(f (< 7ub  ?ubmax)
then (bind ?newub (* 1.2 b))
else (bind ”newub Tubm))
(KBANS1  UPPER null  7newub 1))

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; VIOLATED RULE
: If cycle greater than zero and constraint is inrolated, then decreased upper
; bound by 70%.
(defrule violated_constraint
(satisfaction violated)
(cycle Tcyc)
(upper_bound Tub)
=>
(bind "newub * 0.7 b))
(KBANS1  UPPER null 7newub 0))
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Optimization P Determinat

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

v
-
?
3
bl
?
’
I

.
?
.
?
.
*
.
b
’

.
kg

OPRL.CLP

OPTIMIZATION PARAMETER RULE SET FOR PREMATURE
CONVERGENCE

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

STATUS RULE

Determines whether termination due to satisfaction of convergence criteria or
not.

defrule status

(declare (salience 500))
Ml <- (fire 1)

(iter Nt)

(itmax ?itm)
(retract nl)

Gf (= it %itm)
then  (assert iter_status equal))
else  (assert iter_status not_equal))))

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

b
b4
.
v
.
b
b
b

FEASIBLE SOLUTION RULE

If termination premature and solution at final iteration is feasible, increases
allowable number of iterations until upper bound is exceeded.

(defrule solution_feasible

(declare (salience 300))
(iter_status  equal)

(solution feasible)
nl <- (itmax 2itm)

(itmax_bound ?itmbound)
2 <- (fire 2)
(retract Mm2)
(bind ?newitmax (* 2. %itm))
@if (<= Mnewitmax ?itmbound)
then (retract nl)

(assert (itmax ?newitmax)

else (assert (itmax_bound_is exceeded))))
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;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

INFEASIBLE SOLUTION 1 RULE

If termination premature, solution at final iteration is infeasible, and phi has
not yet been adjusted, increases value of phi.

v
b
.
2
.
k4
.
k4
?

(defrule solution_not_feasible_1

(declare (salience 300))
(iter_status  equal)
(solution not_feasible)

nl <- (phi 7ph)
(phi_init 7phin)

M2 <- (fire 3)

=>

(retract M2)

(if = ?ph  ?phin)

then (bind ?7newphi (* 3. 7ph))
(retract Ml)
(assert (phi  Tnewphi))))

-
b}

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
INFEASIBLE SOLUTION 2A RULE

; If termination premature, solution at final iteration is infeasible, and phi has
; already been adjusted, increase value of phi as long as bound not exceeded.
(defrule solution_not_feasible_2a
(declare (salience 300))
(iter_status equal)
(solution not_feasible)
nl <- (phi 7ph)
(phi_init ?phin)
(phi_bound ?phbound)
(phi_increment ?phincrem)
M2 <- (itmax Mtm)
(itmax_bound 7itbound)
M3 <- (fire 4)
=>
(retract M3)
Gf c ?ph  ?phin)
then (bind ?newphi (+ ?phincrem 7ph))
(bind ?itmnew (* 72.  ?%itm))
(if (<=  Mnewphi ?phbound)
then (if (<= imnew ?itbound)
then (retract Ml Mn2)
(assert (phi  newphi)
(assert (itmax ?itmnew))))))
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;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

; INFEASIBLE SOLUTION 2B RULE
; If termination premature, solution at final iteration is infeasible, phi has
; already been adjusted, and value of phi bound has been exceeded, assert such
; into fact-list.
(defrule solution_not_feasible_2b
(declare (salience 300))
(iter_status equal)
(solution not_feasible)
(phi ?ph)
(phi_init 7phin)
(phi_bound ?phbound)
(phi_increment ?phincrem)
Ml <- (fire 5)
=>
(retract nl)
(f > ?ph  7phin)
then (bind ?newphi (+ ?phincrem ?ph))
(bind ?itmnew (* 2. %itm))
Gf (2 Mnewphi ?phbound)
then (assert (phi_bound_is_exceeded)))))

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

such into fact-list.

’
?
¥
14
2
y
b

(defrule solution_not_feasible_2b

INFEASIBLE SOLUTION 2C RULE

If termination premature, solution at final iteration is infeasible, phi has
already been adjusted, and value of itmax bound has been exceeded, assert

(declare (salience 300))
(iter_status equal)
(solution not_feasible)

nl <- (phi 7ph)
(phi_init ?phin)

M2 <- (itmax %itm)
(itmax_bound ?itbound)

3 <- (fire 6)

=>

(retract n3)

Gf > ?ph  7phin)

then (bind ?itmnew (* 2. %tm))
Gf (6] litmnew %itbound)

then (assert

(itmax_bound_is_exceeded)))))
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;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

»

; ITMAX EXCEEDED RULE

If itmax bound is exceeded and solution feasible, adjust convergence parameters.
If solution infeasible, adjust parameters associated with constraint satisfaction.

; If parameter bounds exceeded, assert 'process stop' into fact-list.

(defrule itmax_exceeded

(declare (salience 100))
(itmax_bound_is exceeded)
1 <- (delfun 2delf)
(delfun_increment 7delfincrem)
n2 <- (dabfun_variable ?dabvar)
(dabfun_increment  ?dabincrem)
M3 <- (itrm %itr)
(new_itrm Inewitrm)
M4 <- (theta 7theta)
M5 <- (ct Ictv)
(ct_increment Ictincrem)
(solution ?sol)
(delfun_bound 7delbound)
(dabvar_bound 7dabbound)
(theta_bound 2thetabound)
(ct_bound ?ctbound)
M6 <- (fire 7)
=>
(retract M6)
Gf (eq 7?sol feasible)
then (bind newdelfun (+ delf 2delfincrem))
(bind 7newdabvar (+ ?dabvar ?dabincrem))
Gf (<= 7Mnewdelfun  ?delbound)
then (retract Tl  Mn2)
(assert (delfun Mnewdelfun))
(assert (dabfun_variable newdabvar)))
else (if > Ntr Tnewitrm)
then (retract Mm3)
(assert (itrm ?Inewitrm))
else (assert (process stop))))
else (bind 7newthet (* 2. het))
(bind "newct (- ctv  ?ctincrem))
Gf (<=  MTewthet ?thetabound)
then (if (>=  7Tnewct 2ctbound)
then (retract 4 M)
(assert (theta 7newthet))
(assert (ct Tnewct)))
else  (assert (process stop)))))
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;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECe

PHI EXCEEDED RULE

; stop' into fact-list.
(defrule phi_exceeded
(declare
(phi_bound_is
nl <- (theta
M2 <- (ct
(ct_increment
(solution
(theta_bound
(ct_bount
M3 <- (fire

(retract M3)
(if (eq 7sol

If phi bound exceeded and solution infeasible, adjust parameters associated
with constraint satisfaction. If parameter bounds exceeded, assert 'process

?thetabound)
Ictbound)
8)

not_feasible)

then (bind ?newthet (* 2. 2thet))
(bind 7”newct (- ?ctv ?ctincrem))
Gf (< Inewthet 2thetabound)
then (if (< Mnewct ?ctbound)
then (retract !l 7n2)
(assert (theta ?newthet))

(assert
else  (assert

.
»

(ct Tnewct)))
(process stop)))))

; CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

PRINT RULE

(defrule parameters_out
(declare
(iter_status

nl <- (itmax

(phi
(delfun
(dabfun_variable
(itrm
(theta
(ct

(retract nl)

(KBANSI1

(KBANS1  DELFUN
(KBANS1  PHI
(KBANS1 CT

Subroutine KBANS1 used to update new parameter values.

(salience 10))
equal)

2itm)

?ph)

2delf)

?dabvar)

itr)

2the)

ctv)

ITRM tm itr)
DABVAR delf ?dabvar)
THETA ?ph ?the)
null Tctv 0)
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;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

PRINT STOP RULE

; If ‘process stop' asserted into fact-list at any time, KBANSI1 used to relay
; information to main routine.
,(dcfrulc process_stop
(declare (salience 10))

nl <- (process stop)
=>

(retract nl)

(KBANS1  STOP null 0 0))
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Coordination Cocfficient Ass

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeccececeeeeeee
i COEFRL.CLP

COEFFICIENT ASSIGNMENT RULE SET
;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Me e we o we o

; INITIALIZE RULE
; If first cycle, set switch parameters.
(defrule initial
(declare (salience 500)) .
(cycle 2cyc)
nl <- (fire 1)
=>
(retract nl)
(if (= cye 0)
then (assert (process stop))

(bind 7?sl 1)

(bind 7s2 1)

(KBANSI1 INS1 INS2 75l 7s2)
else  (assert (process no_stop))))

; CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeee
CONSTRAINT1A RULE

Determines constraint satisfaction for present and previous cycles.

’
b4
9
.
y
k4

defrule constraintla_satisfaction

(declare (salience 300))
(process no_stop)

™nl <- (gl_present 2g1)

2 <- (gl_past 7glold)

(constraint_thickness 7ct)

(bind 7ctneg (- 0.0 )
af (>= g1 tneg)
then (bind 7sl 1)

(retract Mnl)
(KBANS1  SI ml 7?1 0)
else  (if (>= 7glold Tctneg)

then (bind 7?sl 1)
(KBANS1 S1 nul 21 0)
(retract m2))))
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-CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CONSTRAINT2A RULE

Determines constraint satisfaction for present and previous cycles.

b4
.
v
.
y
.
3
.
v

(defrule constraint2a_satisfaction

(declare (salience 100))
(process no_stop)

nl <- (g2_present 7g2)

M2 <- (g2_past 7g20ld)

(constraint_thickness 7ct)

(bind ?ctneg (- 0.0 )
Gf (>= 782 ctneg)

then (bind ?s2 1)

(retract Mnl)

(KBANS1 S2 nll 72 0)
else (f (>= 1?g2old Ictneg)

then (bind 7sl 1)
(KBANS1  S2 null 72 0)
(retract m2))))

.
’

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

. CONSTRAINTIB RULE
; Determines constraint satisfaction for present and previous cycles.
,(defrulc constraint1b_satisfaction

(declare (salience 300))

(process no_stop)

(g1_present 2gl)

(gl_past 7glold)

(constraint_thickness ?ct)

nl <- (fire 2)

=>

(bind 7ctneg (- 0.0 )
(f (< 7gl  7ctneg)

then (f (< 7glold Ictneg)
then (bind ?s1 0)
(assert (statusl trade-off))

(KBANS1  S1 nll 7?1 0)
(retract n1))))
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;CCCCCCCCCCCCCeceeececececeeececccceeccececceccercccceccecccecc

; CONSTRAINT2B RULE
(defrule constraint2b_satisfaction
(declare
(process
(g2_present
(g2_past
(constraint_thickness
M1 <- (fire
=>
(bind ?ctneg (- 0.0
Gf (< 782 Ictneg)
then (if (< ?g2old
then (bind ?s2
(assert (statusl
(KBANS1
(retract

.
’

Determines constraint satisfaction for present and previous cycles.

(salience
no_stop)
7g2)
7g20ld)
2ct)

3)

ct))

100))

Tctneg)

trade-off))
null  7s2

0)

S2
n1))))

0)

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

TRADE-OFF1 RULE

b4
r
-
’
b4
?

(defrule tradel

(declare
(process
M1 <- (statusl
(g1_present
(gl_past
(obj_gradient1
(obj_gradient2
=>
(retract nl)
Gf > 2dwdx1
then (if > gl
then (bind ?t11
(bind 212
else (bind 7t11
(bind 712
else (if (? g1
then (bind ™11
(bind 7t12
else (bind 7t11
(bind 7t12
(KBANS1 TI11 TI2

Determines t coefficient values.

(salience
no_stop)
trade-off)
2gl)
?glold)
2dwdx1)
2dwdx2)

10)

dwdx2)
?glold)
-.1)

"l ni12)
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:CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; TRADE-OFF2 RULE
: Determines t coefficient values.
(defrule trade?
(declare (salience 10))
(process no_stop)
™nl <- (status2 trade-off)
(g_present 7g2)
(g2_past 7g20ld)
(obj_gradientl 2dwdx1)
(obj_gradient2 2dwdx2)
=>
(retract 1)

Gf (62 2dwdx1 dwdx2)
then (if > 7g2  ?g2old)
then (bind 721 -.1)

(bind 722 .1)
else (bind 721 -.2)
(bind 722 .2))
else (f ? 7g2  ?g2old)
then (bind 7221 .1)
(bind 722 -.1)
else (bind 721 .2)
(bind 722 -.2)))
(KBANS1 T21 T22 M21 22))
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